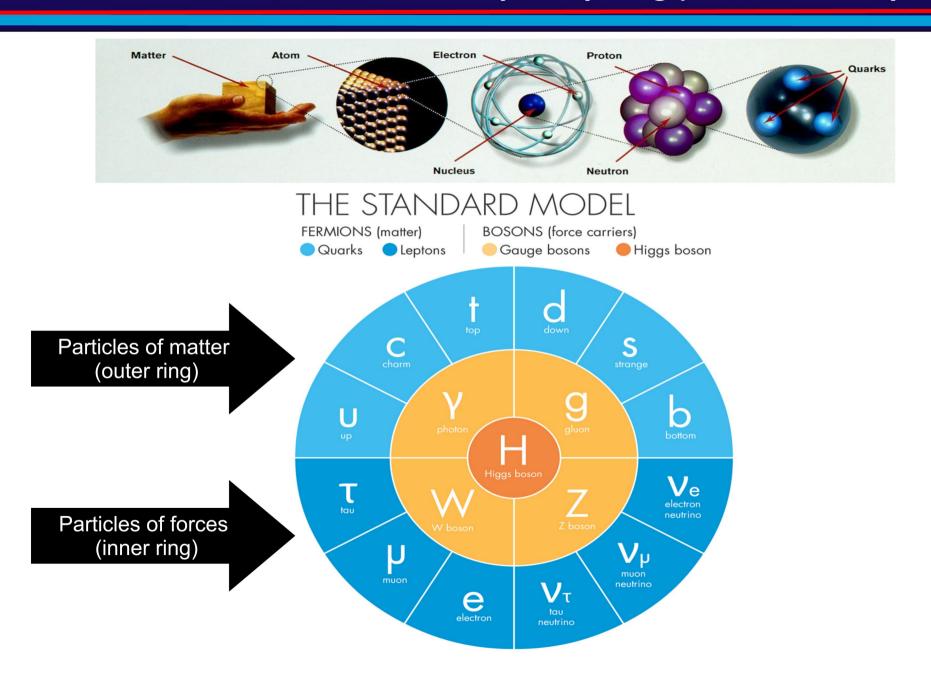
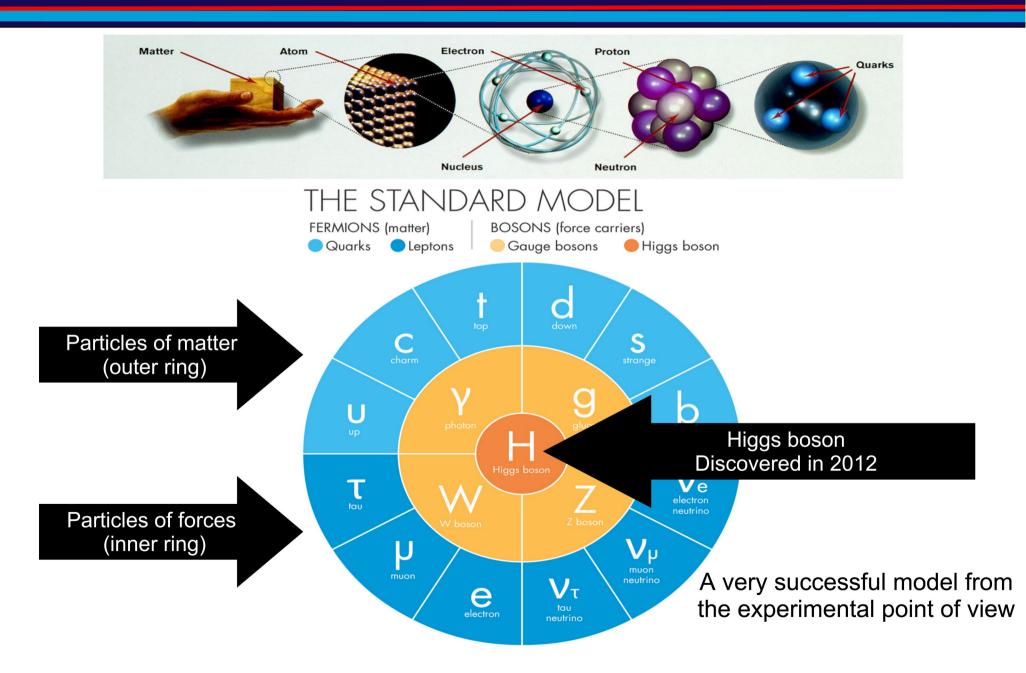
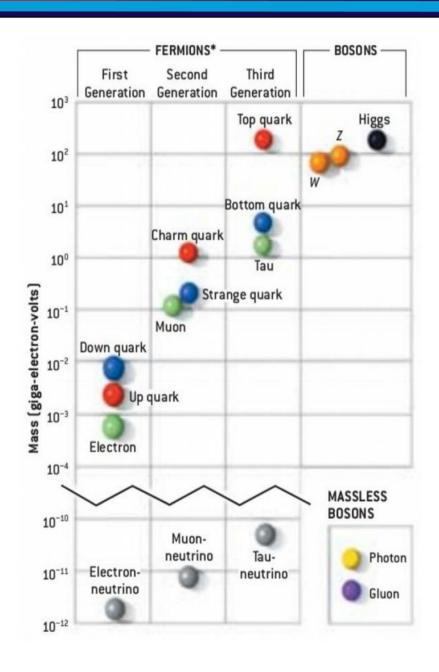

ATLAS


The history of the universe through particle physics

It is the key to solving fundamental questions: What is the physics that governs our universe? Is there a theory that explains all natural phenomena in a fundamental way?


As we go back in the history of the universe it becomes denser and hotter (energy) and the distance scales become smaller

What do we know today about matter? The standard model, a model to unify everything (or almost everything)


^{*} Every fundamental particle has a corresponding antiparticle, same mass and opposite electric charge

What do we know today about matter? The standard model, a model to unify everything (or almost everything)

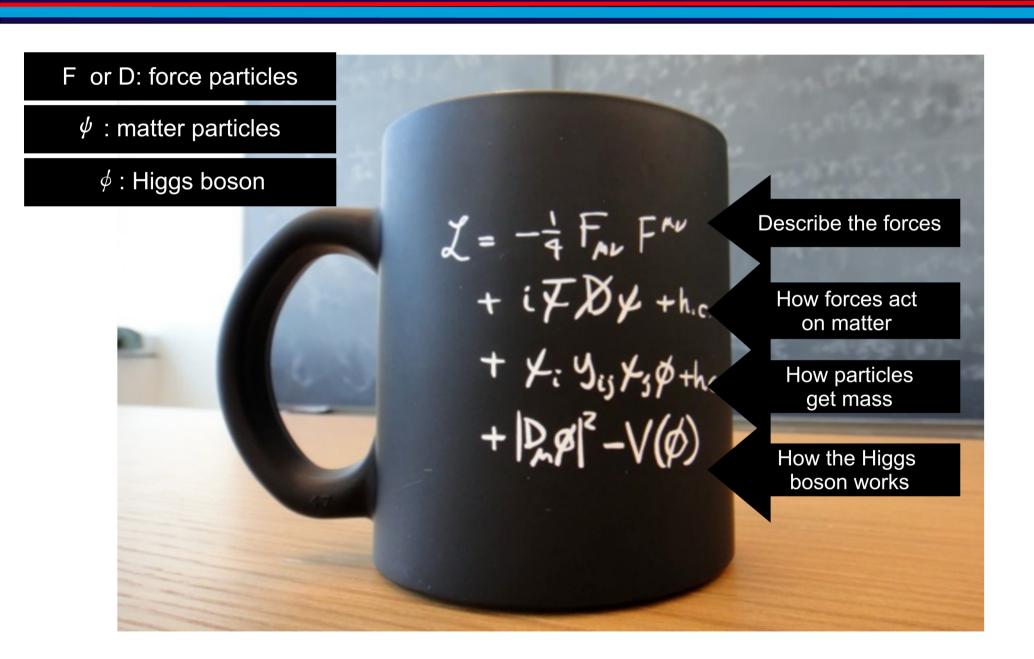
^{*} Every fundamental particle has a corresponding antiparticle, same mass and opposite electric charge

The Higgs boson: the origin of particle masses

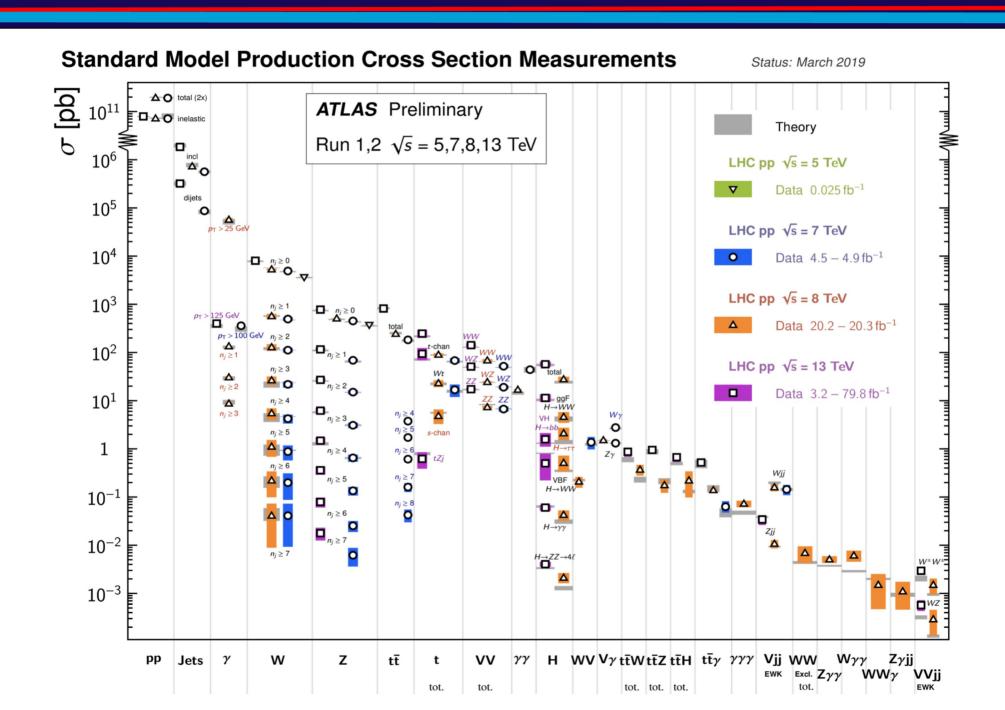
Explanation proposed by Brout, Englert, Higgs et al., 1964

- "Brout-Englert-Higgs mechanism (BEH)"
 → origin of masses
- ~ 10⁻¹¹ s after the Big Bang, when Higgs field became active, particles acquired masses proportional to the strength of their interactions with this Higgs field

Consequence: existence of a Higgs boson

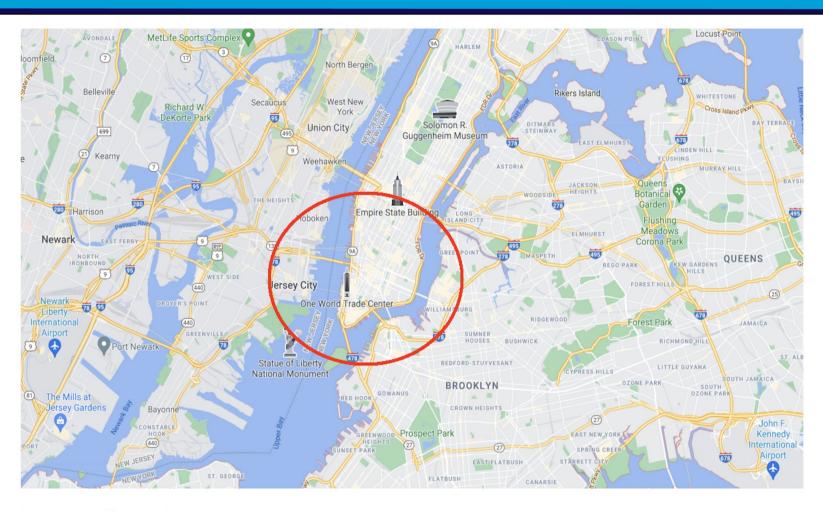

- The Higgs boson is the quantum of the new postulated field
- It has been searched for > 30 years at accelerators all over the world
- Finally discovered at the LHC in 2012

The formula of the universe?


```
\mathcal{L}_{SM} = -\frac{1}{2}\partial_{
u}g^a_{\mu}\partial_{
u}g^a_{\mu} - g_sf^{abc}\partial_{\mu}g^a_{
u}g^b_{
u}g^c_{
u} - \frac{1}{4}g^2_sf^{abc}f^{ade}g^b_{
u}g^c_{
u}g^d_{
u}g^e_{
u} - \partial_{
u}W^+_{
u}\partial_{
u}W^-_{
u} - \partial_{
u}W^+_{
u}\partial_{
u}W^-_{
u} - \partial_{
u}W^-_{
u}\partial_{
u}W^-_{
                                                                  M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - igc_w))
                                                                                                             W_{\nu}^{+}W_{\nu}^{-}) - Z_{\nu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+}) + Z_{\nu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+})) -
                                                    igs_w(\partial_{
u}A_{\mu}(W_{\mu}^+W_{
u}^--W_{
u}^+W_{\mu}^-) - A_{
u}(W_{\mu}^+\partial_{
u}W_{\mu}^--W_{\mu}^-\partial_{
u}W_{\mu}^+) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-\partial_{
u}W_{\mu}^+) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-\partial_{
u}W_{\mu}^-) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^--W_{\mu}^-) + A_{\mu}(W_{
u}^+\partial_{
u}W_{\mu}^-) + A_{\mu}(W_{
u}^-\partial_{
u}W_{\mu}^-) + A_{\mu}(W_{\mu}^-) + A_{\mu}(W_{
                                                            (W_{
u}^{-}\partial_{
u}W_{
u}^{+})) - \frac{1}{2}g^{2}W_{
u}^{+}W_{
u}^{-}W_{
u}^{+}W_{
u}^{-} + \frac{1}{2}g^{2}W_{
u}^{+}W_{
u}^{-}W_{
u}^{+}W_{
u}^{-} + g^{2}c_{w}^{2}(Z_{
u}^{0}W_{
u}^{+}Z_{
u}^{0}W_{
u}^{-} - G_{
u}^{0}W_{
u}^{-}W_{

                                                      Z^0_\mu Z^0_\mu W^+_
u W^-_
u) + g^2 s^2_w (A_\mu W^+_
u A_
u W^-_
u - A_\mu A_\mu W^+_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u (W^+_
u W^-_
u - A_\mu A_\mu W^+_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u (W^+_
u W^-_
u - A_\mu A_\mu W^-_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u (W^+_
u W^-_
u - A_\mu A_\mu W^-_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u (W^+_
u W^-_
u - A_\mu A_\mu W^-_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u (W^+_
u W^-_
u - A_\mu A_\mu W^-_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u W^-_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w c_w (A_\mu Z^0_
u W^+_
u) + g^2 s_w (A_\mu W^+_
u) +
                                           W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac
                                                                                                                                                                                                                                                     \beta_h \left( \frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h - 
                                                                                                                                                                                                                                                                                                                                                                                                                    g\alpha_h M (H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-) -
                                                                                                             \frac{1}{5}q^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)-
                                                                                                                                                                                                                                                                                                                                                                                                                                                 gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H -
                                                                                                                                                                                                                                 \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{0})-W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+
        \frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{2}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+
  M(\frac{1}{c}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+})-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^
                                                                                                          W_{\mu}^{-}\phi^{+}) -ig\frac{1-2c_{w}^{2}}{2c}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})+igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})-igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})
                            \tfrac{1}{4} g^2 W_u^+ W_u^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 \tfrac{1}{c^2} Z_\mu^0 Z_\mu^0 (H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^+ W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8} g^2 W_\mu^- (H^2 + (\phi^0)^2 + 2\phi^-\phi^-) - \tfrac{1}{8}
                    \frac{1}{2}g^2\frac{s_w^2}{s_w^2}Z_u^0\phi^0(W_u^+\phi^-+W_u^-\phi^+)-\frac{1}{2}ig^2\frac{s_w^2}{s_w^2}Z_u^0H(W_u^+\phi^--W_u^-\phi^+)+\frac{1}{2}g^2s_wA_u\phi^0(W_u^+\phi^-+W_u^-\phi^+)
                                                                                                                                    W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{2}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})
                       g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + rac{1}{2} i g_s \, \lambda_{ij}^a (ar q_i^\sigma \gamma^\mu q_i^\sigma) g_\mu^a - ar e^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - ar 
u^\lambda (\gamma \partial + m_u^\lambda) 
u^\lambda - ar u_i^\lambda (\gamma \partial + m_u^\lambda) 
u^\lambda - ar u_i^\lambda
                                                                                         m_u^{\lambda} u_i^{\lambda} - \bar{d}_i^{\lambda} (\gamma \partial + m_d^{\lambda}) d_i^{\lambda} + igs_w A_{\mu} \left( -(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + \frac{2}{2} (\bar{u}_i^{\lambda} \gamma^{\mu} u_i^{\lambda}) - \frac{1}{2} (\bar{d}_i^{\lambda} \gamma^{\mu} d_i^{\lambda}) \right) +
                                                                     \frac{ig}{4c}Z_{\mu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{w}^{2}-1-\gamma^{5})d_{i}^{\lambda})+
  (\bar{u}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2+\gamma^5)u_i^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^+((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_i^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_i^{\kappa}))+
                                                                                                                                                                                                                        \frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{i}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{i}^{\lambda})\right)+
                                                                                                                                                                                      \frac{ig}{2M\sqrt{2}}\phi^+\left(-m_e^\kappa(\bar{\nu}^\lambda U^{lep}_{\lambda\kappa}(1-\gamma^5)e^\kappa)+m_\nu^\lambda(\bar{\nu}^\lambda U^{lep}_{\lambda\kappa}(1+\gamma^5)e^\kappa\right)+
                                                                  \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep\dagger}_{\lambda\kappa}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep\dagger}_{\lambda\kappa}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda})-
                                                                                                     \frac{g}{2} \frac{m_e^2}{M} H(\bar{e}^{\lambda} e^{\lambda}) + \frac{ig}{2} \frac{m_{\nu}^2}{M} \phi^0(\bar{\nu}^{\lambda} \gamma^5 \nu^{\lambda}) - \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda}) - \frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^R (1 - \gamma_5) \hat{\nu}_{\kappa} - \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda}) + \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar{\nu}^{\lambda} \gamma^5 \nu^{\lambda}) - \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda}) - \frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^R (1 - \gamma_5) \hat{\nu}_{\kappa} - \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar{\nu}^{\lambda} \gamma^5 \nu^{\lambda}) + \frac{ig}{2} \frac{m_e^2}{M} \phi^0(\bar
                                           \frac{1}{4} \overline{\nu_{\lambda}} \frac{1}{M_{\lambda\kappa}^R} \frac{1}{(1-\gamma_5)\hat{\nu}_{\kappa}} + \frac{ig}{2M_{\lambda}/2} \phi^+ \left( -m_d^{\kappa} (\bar{u}_i^{\lambda} C_{\lambda\kappa} (1-\gamma^5) d_i^{\kappa}) + m_u^{\lambda} (\bar{u}_i^{\lambda} C_{\lambda\kappa} (1+\gamma^5) d_i^{\kappa}) + m_u^{\lambda} (\bar{u}_i^{\lambda} C_{\lambda\kappa} (1+\gamma^
                                                                                                     =\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_i^{\kappa})-m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}\right)-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_i^{\lambda}u_i^{\lambda})-
                                        rac{g}{2}rac{m_{\dot{d}}^{lpha}}{M}H(ar{d}_{i}^{\dot{\lambda}}d_{i}^{\dot{\lambda}})+rac{ig}{2}rac{m_{\dot{u}}^{\dot{\alpha}}}{M}\phi^{0}(ar{u}_{i}^{\dot{\lambda}}\gamma^{5}u_{i}^{\dot{\lambda}})-rac{ig}{2}rac{m_{\dot{d}}^{\dot{\alpha}}}{M}\phi^{0}(ar{d}_{i}^{\dot{\lambda}}\gamma^{5}d_{i}^{\dot{\lambda}})+ar{G}^{a}\partial^{2}G^{a}+g_{s}f^{abc}\partial_{\mu}ar{G}^{a}G^{b}g_{\mu}^{c}+
ar{X}^+(\partial^2-M^2)X^+ + ar{X}^-(\partial^2-M^2)X^- + ar{X}^0(\partial^2-rac{M^2}{c^2})X^0 + ar{Y}\partial^2Y + igc_wW^+_\mu(\partial_\muar{X}^0X^- -
                                                                                                                                                                                      \partial_{\mu}\bar{X}^{+}X^{0})+igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-}-\partial_{\mu}\bar{X}^{+}Y)+igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0}-
                                                                                                                                                                                                 \partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-igc_{w}Z_{\mu}^{0})
                                                                                                                                                                                                                                                                                                                                                                                                                                           \partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-
\partial_{\mu} \bar{X}^{-} X^{-}) - \frac{1}{2} g M \left( \bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \frac{1}{c^{2}} \bar{X}^{0} X^{0} H \right) + \frac{1 - 2 c_{w}^{2}}{2 c_{w}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right) + \frac{1}{c^{2}} i g M \left( \bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-} \right)
                                                                                                                                                              \frac{1}{2a}igM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{
                                                                                                                                                                                                                                                                                                                                                                                                                                                    \frac{1}{2}igM(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}).
```

The formula of the universe?


A very successful model

An example in our tool box

The Large Hadron Collider (LHC)

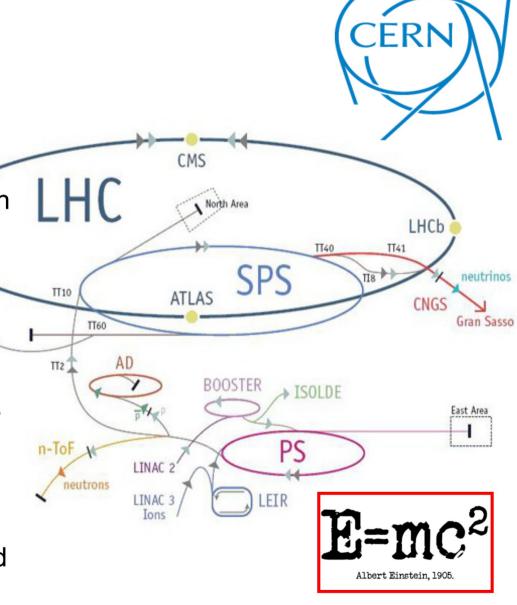
Exploring the small scales:

- **Resolving structures:** Use particle beam like light in a microscope. Need very short wavelength, i.e. particles at very high energies $E = hc/\lambda$
- Creating new particles: collide particles with 'available' collision energy corresponding to at least the rest mass of the new particle E = mc²

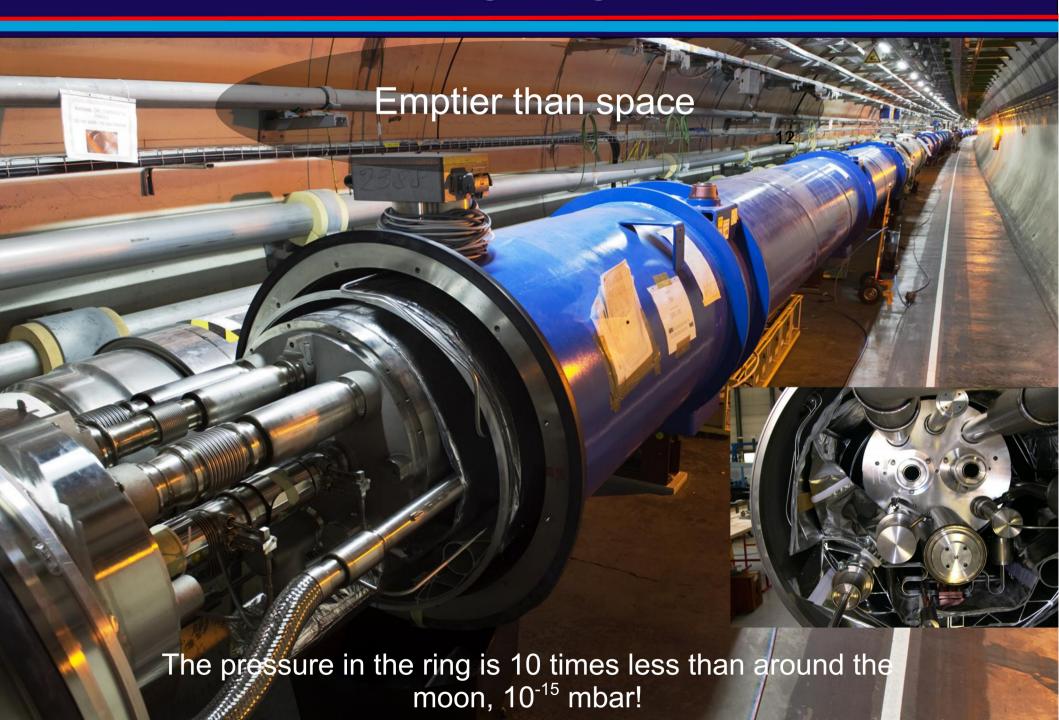
10

The Large Hadron Collider (LHC)

 Located on the French-Swiss border at CERN


Higher energy than any other particle collider (protons)

 Millions of millions of protons, each with the energy of a mosquito at 99.9999991% of the speed of light circulate the 27km ring 11 000
 times/second

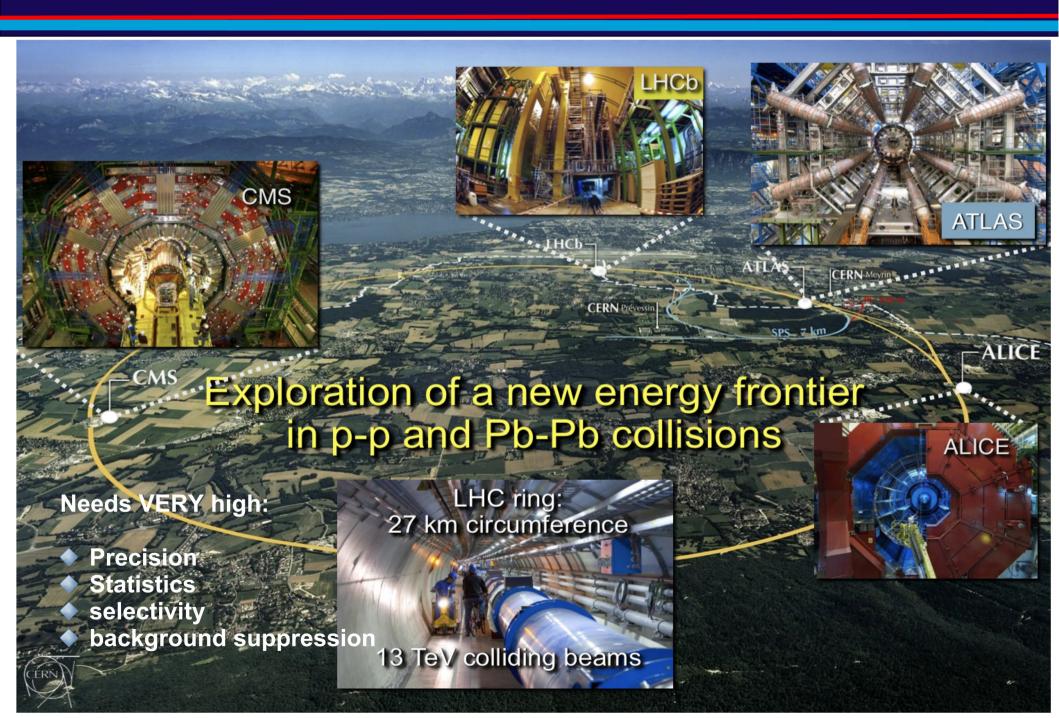

 Driven inside the accelerator by thousands of magnets of different types and sizes

600 million collisions per second

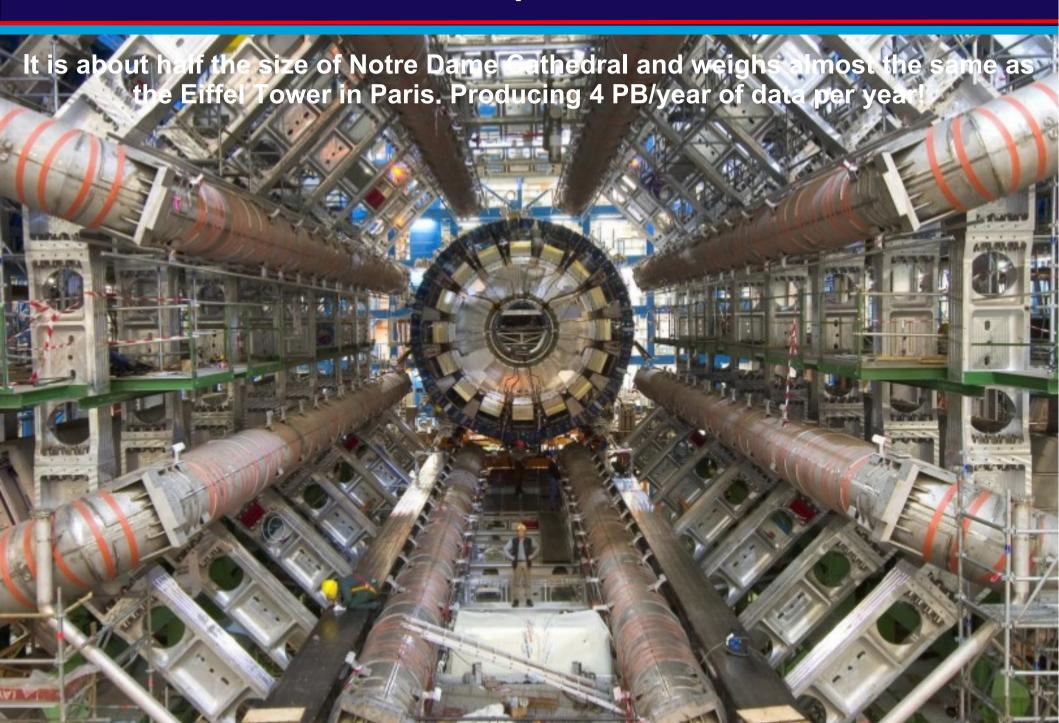
 4 high precision detectors built to record data: ATLAS, CMS, LHCb and ALICE

The last stage/ring: the LHC

The last stage/ring: the LHC


Cooler than space

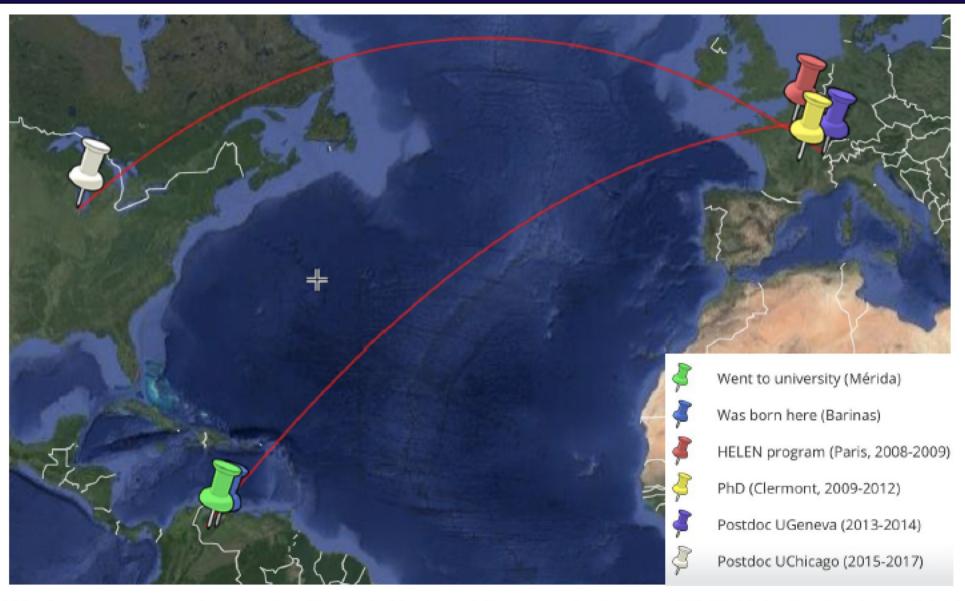
LHC 1.9 degrees above absolute zero = - 271 C Space 2.7 degrees above absolute zero = - 270 C


In order to maintain a temperature suitable for the superconductivity of the magnets and the radio-frequency cavities

LHC: 4 main detectors

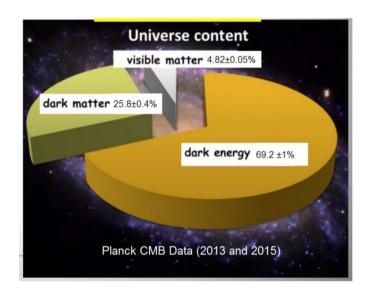
An example: ATLAS

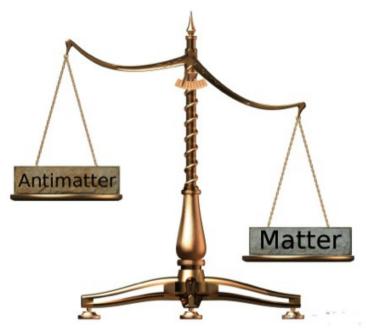
The human part of a particle physics experiment


The human part of a particle physics experiment

The human part of a particle physics experiment

The human part of a particle physics experiment: One of 3000 stories

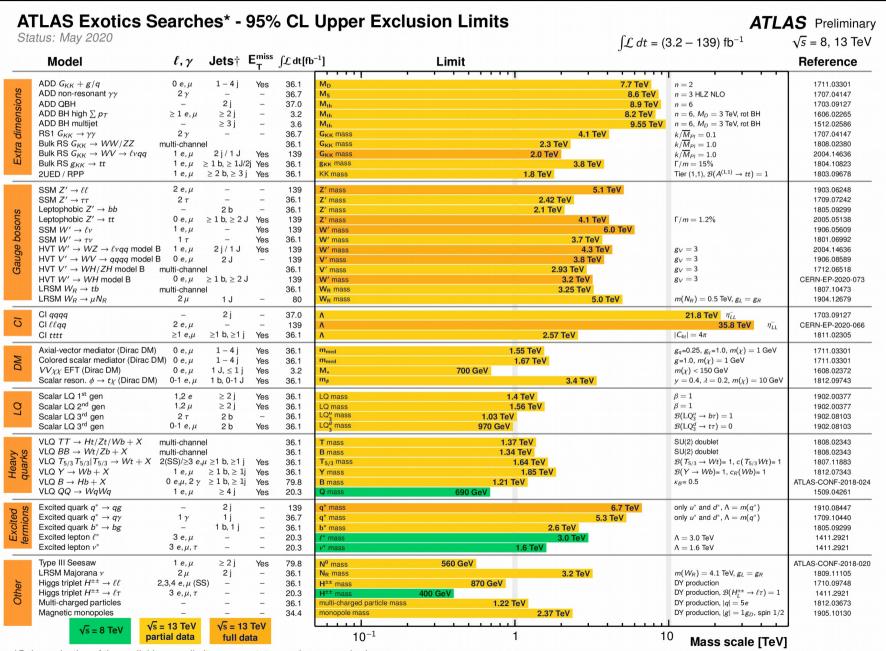



Work as a researcher at the French National Research Center (CNRS) in Paris since 2018 My work: Higgs physics, silicon detector R&D, capacity building Europe-Latin America

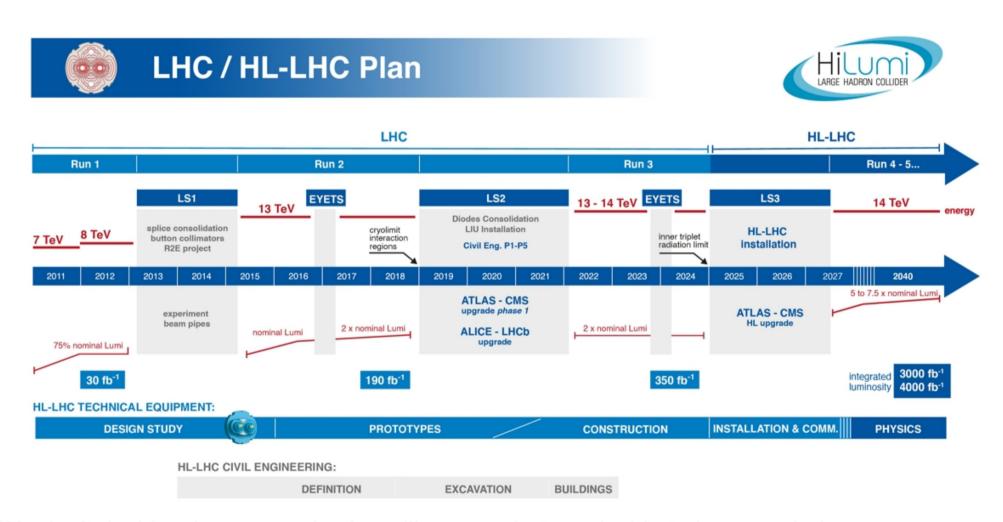
But there are still many questions without answers!

Today:

- Numerous predictions of the Standard Model have been experimentally verified with high accuracy
- Some unanswered questions:
 - And the gravitation?
 - How to unify all the particle interactions?
 - What is the nature of dark matter and dark energy?
 - The SM does not include enough CP violation to account for the matter-antimatter asymmetry observed in nature
- Is the SM an approximation of a more general theory?
 - Increase our experiment's precision to reach its limits!

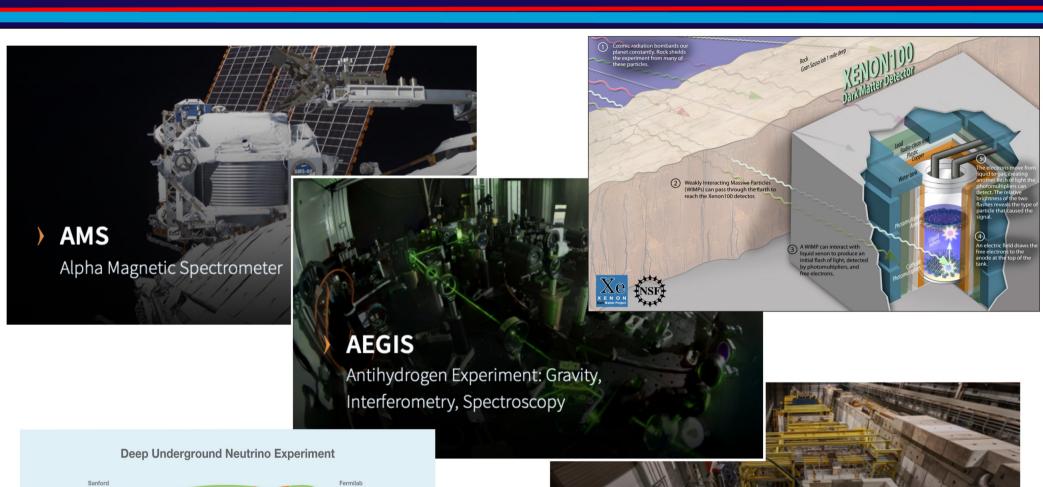


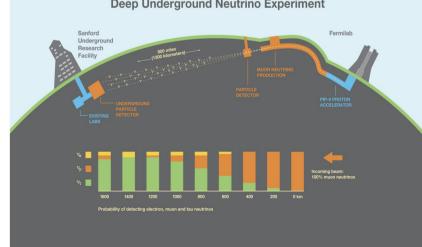
Where are going now? Particle physicists are explorers


New physics so far?

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

[†]Small-radius (large-radius) jets are denoted by the letter j (J)


New physics may appear now or after several years of exploration



We don't decide where new physics will appear, but we decide to keep exploring:

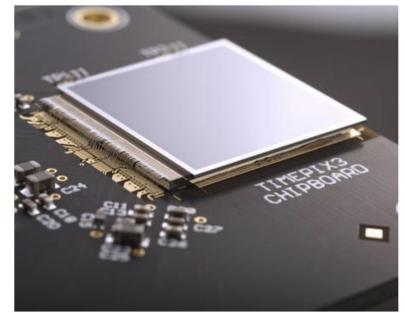
- Improving our data analysis techniques
- Taking advantage of new technologies and/or developing new ones
- Collaborating with other scientific fields and industry
- New eyes, new people, new collaborations

Many more tools in our box

- From Rutherford's experiment: the structure of the atom
- To the most powerful accelerator ever built: the LHC
- All these experiments reveal to us mysteries of nature
- But they also take us to the limit of what we can build, what we can do, measure
- Driving technological developments of high impact

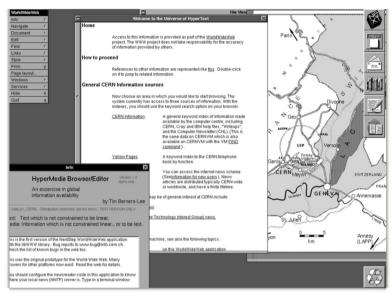
- An accelerator can be used to:
 - treat a tumor
 - provide a sustainable and cleaner source of energy
 - burn nuclear waste
 - harden materials for better tyres and more resistant plastic foils
 - implant ions in semi-conductor
 - map proteins
 - design new drugs
 - date archaeological findings
 - ...among others

Hadrontherapy: more than 100,000 cancer patients treated worldwide (45 facilities)



Accelerator Mass Spectroscopy can be used to date paintings and detect fraudulent copies

- A particle detector can be used to:
 - visualise the brain activity
 - validate new drugs in preclinical trials
 - confirm the efficacy of cancer treatment
 - spot the location and content of suspicious cargo
 - detect contraband radioactive materials
 - ... among others



Medical imaging sensors. Image by MARS startup

Dosimetry: Real-time measurement of radiation exposure

- Information technology developed for particle physics can be used to:
 - for financial and investment forecasting
 - to provide seamless platforms for e-commerce, e-health and eadministration
 - to separate bio-molecules
 - to monitor and analyse climate change
 - In particular through the use of the Grid computing applications
 - ... among others

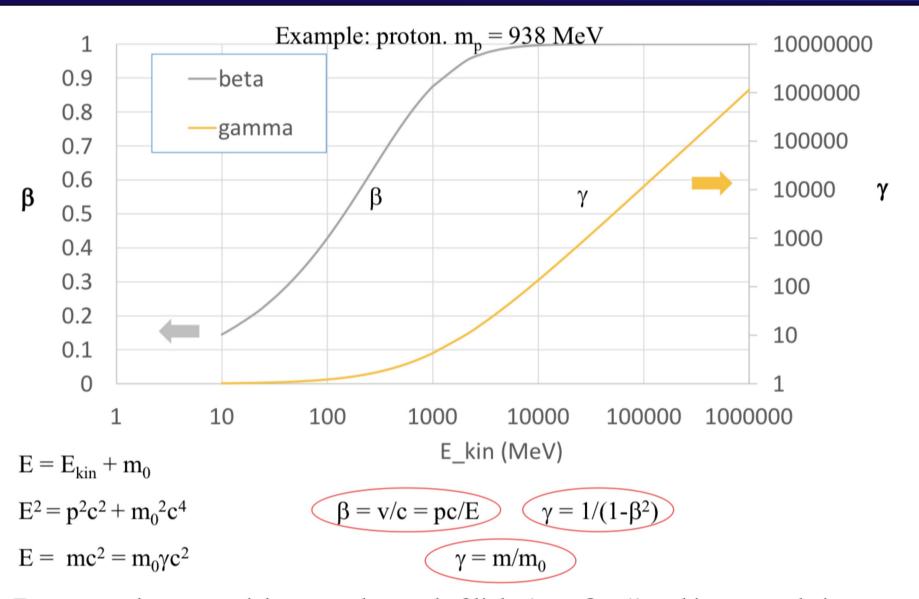
In 1989 Tim Beners-Lee invented the WWW. Sharing information between researchers and universities

European Grid Infrastructure provide access to highthroughput computing resources across Europe using grid computing techniques

- Capacity building
- Education & training
- An unique way of thinking, to approach and solve problems
- Invaluable inside and outside of academia

Fermilab education high schools tours

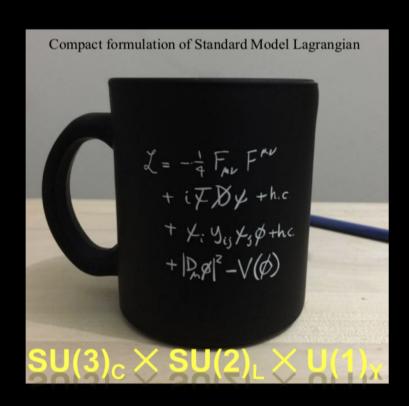
CERN summer student program



One of the events of the ATLAS Early Career Scientist Board

Thanks! ¡Gracias!

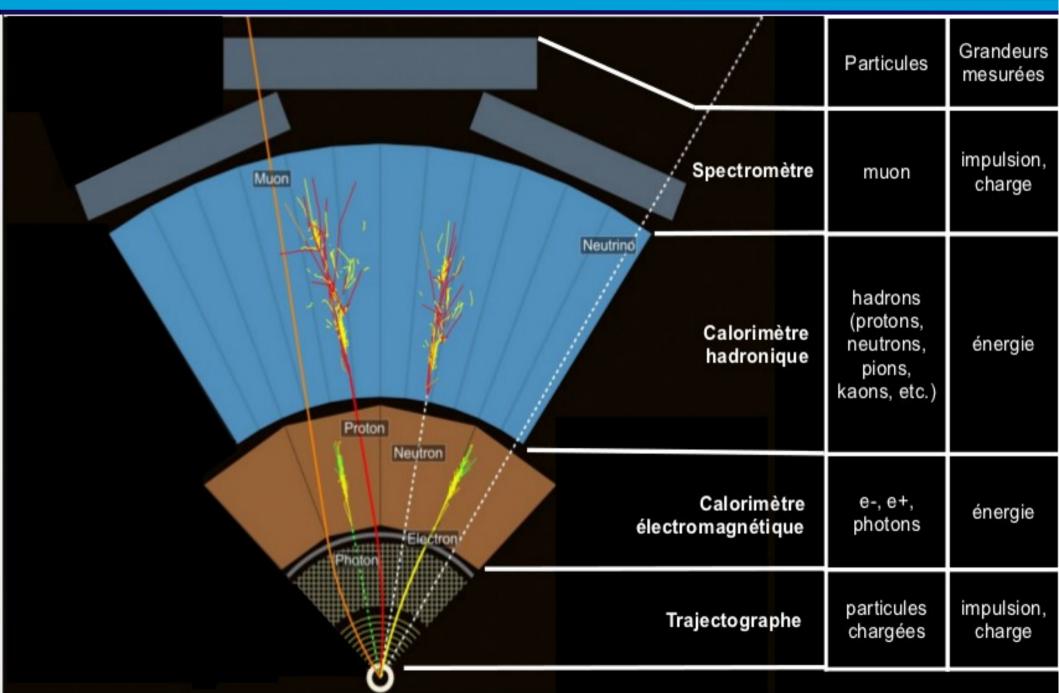
Backup


Relativistic kinematics

Energy accelerates particles <u>towards</u> speed of light (v=c, β = 1) and increases their relativistic mass!

The Standard Model

The Standard Model is much more than an order scheme for elementary particles. It's the theory of <u>almost</u> everything.



Unfortunately it has ~20 free parameters which need to be measured.

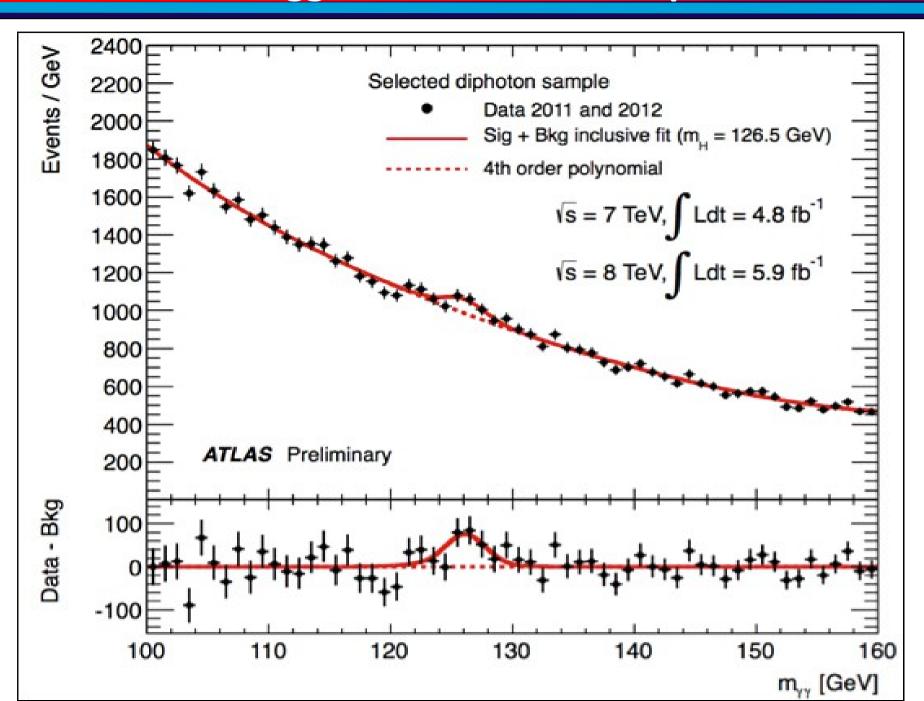
Neutrinos remain massless!

Parameters of the Standard Model [h			
Symbol	Description	Renormalization scheme (point)	Value
m _e	Electron mass		511 keV
m_{μ}	Muon mass		105.7 MeV
m_{T}	Tau mass		1.78 GeV
m_{u}	Up quark mass	μ _{MS} = 2 GeV	1.9 MeV
$m_{\rm d}$	Down quark mass	μ _{MS} = 2 GeV	4.4 MeV
m _s	Strange quark mass	μ _{MS} = 2 GeV	87 MeV
m _c	Charm quark mass	$\mu_{\overline{\rm MS}} = m_{\rm C}$	1.32 GeV
m_{b}	Bottom quark mass	$\mu_{\overline{\rm MS}} = m_{\rm b}$	4.24 GeV
mt	Top quark mass	On-shell scheme	172.7 GeV
θ ₁₂	CKM 12-mixing angle		13.1°
θ_{23}	CKM 23-mixing angle		2.4°
θ ₁₃	CKM 13-mixing angle		0.2°
δ	CKM CP-violating Phase		0.995
g ₁ or g'	U(1) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	0.357
g ₂ or g	SU(2) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	0.652
g ₃ or g _S	SU(3) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	1.221
$\theta_{\rm QCD}$	QCD vacuum angle		~0
V	Higgs vacuum expectation value		246 GeV
m _H	Higgs mass		~ 125 GeV (tentative)

Cómo se descubre una partícula? Tomemos el ejemplo del Higgs

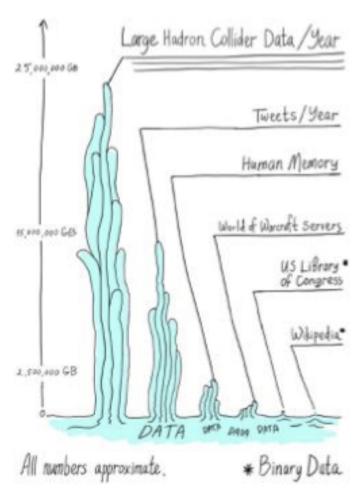


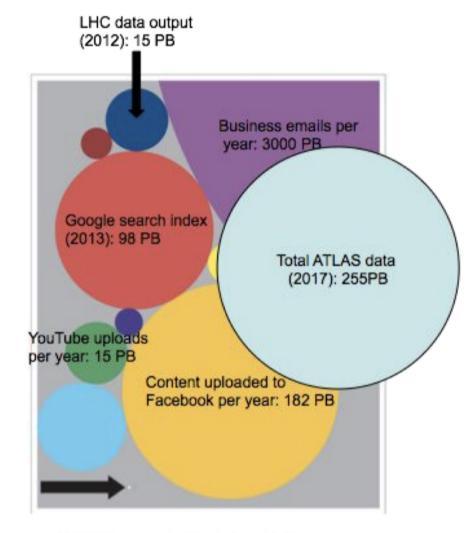
How do we discover a new particle?


We need to produce the Higgs and then we need to be able to detect/identify it!

First difficulty: We would need 10¹⁴ collisions to observe one Higgs The LHC produces 600 million collisions per second Second difficulty: Only stable particles will be observed in the detectors. The Higgs is ephemeral and decays to other particles as a pair of photons Many particles are produced and we need to put the puzzle together

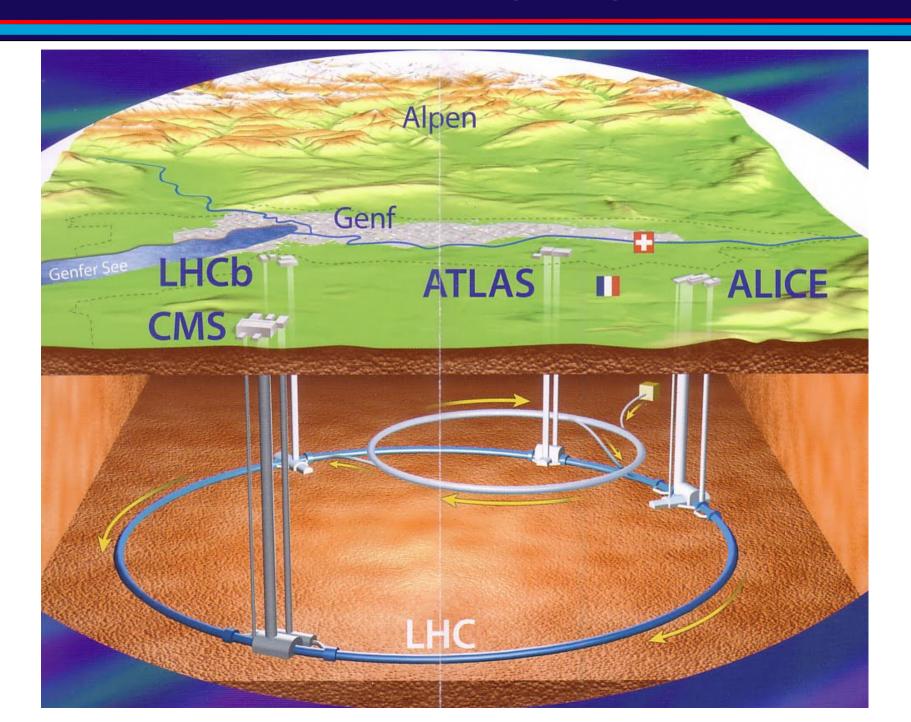
How do we discover a new particle? The Higgs boson as an example




How do we discover a new particle? The Higgs boson as an example

Big data?

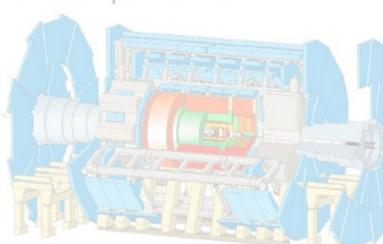
Big Data?

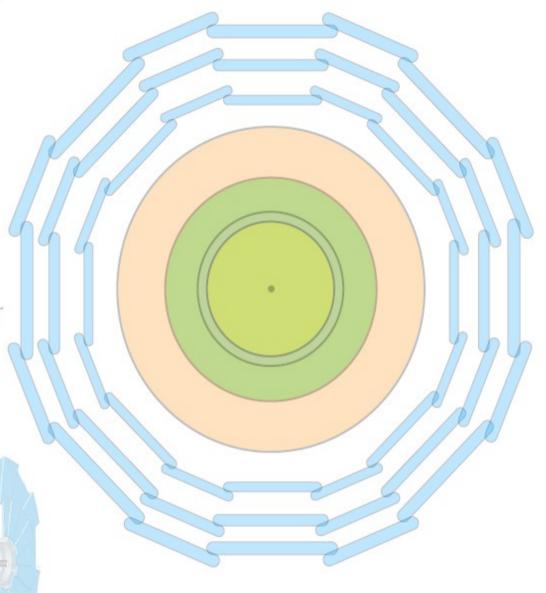


WIRED.com © 2014 Condé Nast.

Taken from http://www.wired.com/2013/04/bigdata/

Taken from http://www.symmetrymagazine.org/image/august-2012-big-data

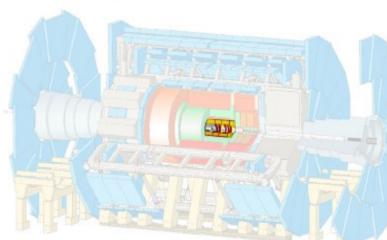

LHC: 4 detectores principales

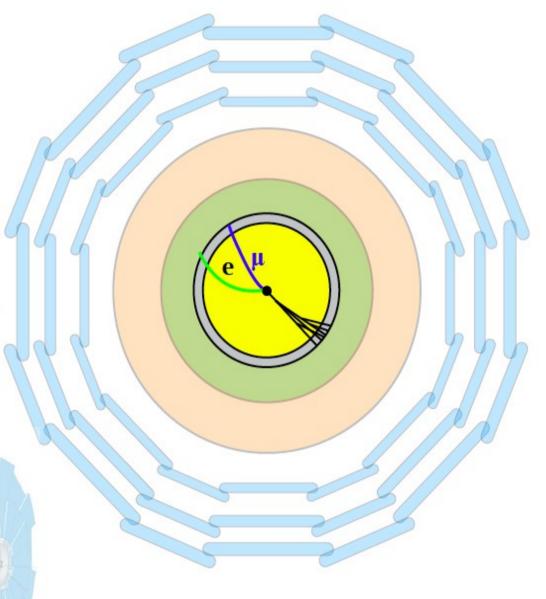


Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter

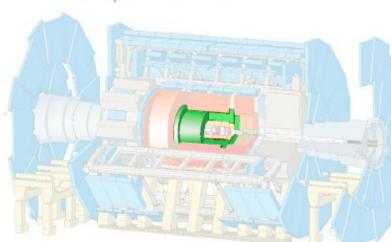


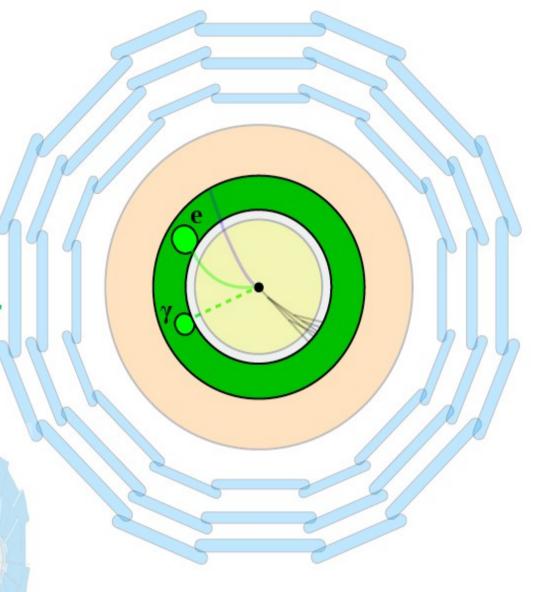


Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter

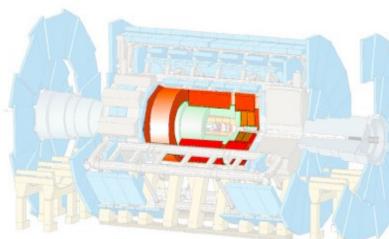


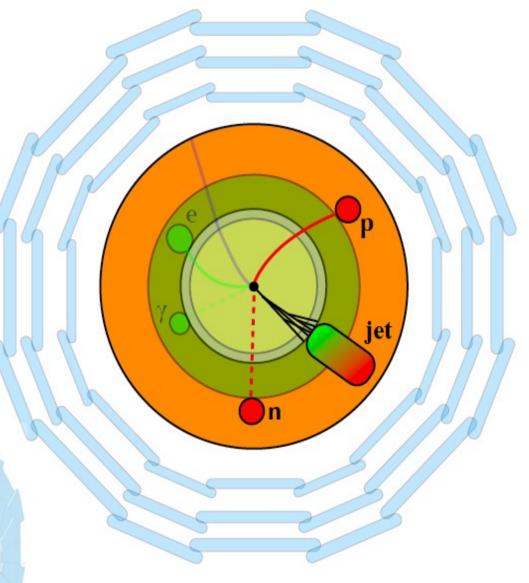


Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter

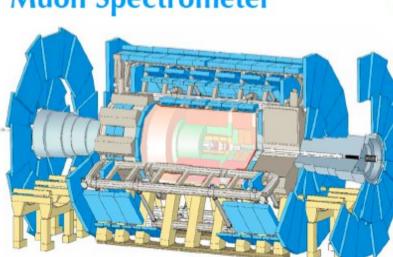


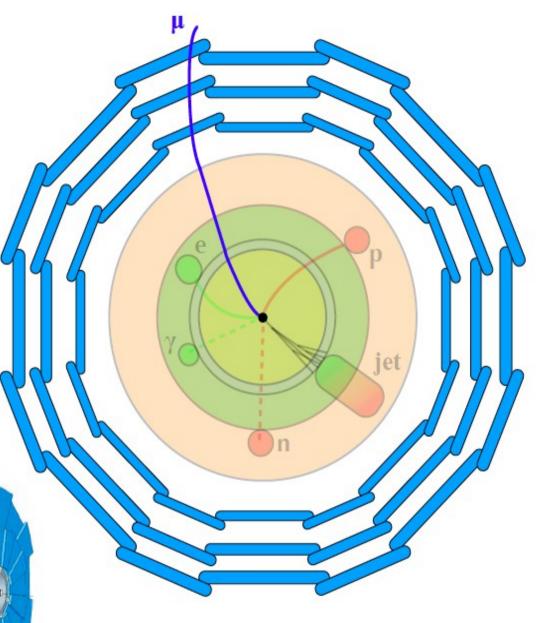


Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter

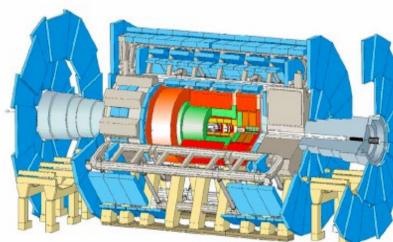


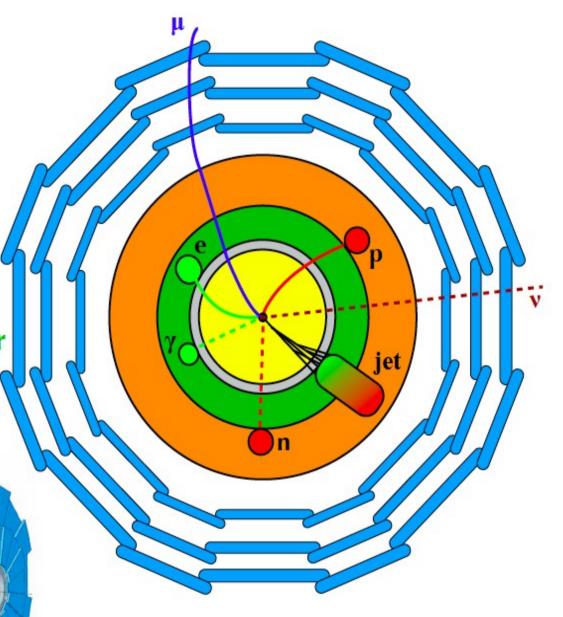


Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter





Inner Detector

Electromagnetic calorimeter

Hadronic calorimeter

