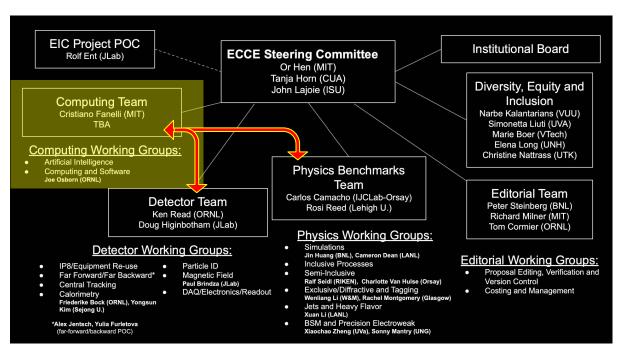


C. Fanelli for the Computing Team



Outline

- Structure and Role of the Computing Team
- Initial Documentation and Communications
- Planned Activities and Artificial Intelligence
- Action Items and Summary

Computing Team

- The Computing Team more recently created to support and work synergistically with the Detector and Physics Teams and act as "liaison" with computing centers.
- CT Co-convener (TBD)
- CT is currently divided into two main working groups:
 - Computing and Software (Joe Osborn, ORNL)
 - Artificial Intelligence (TBD)
- CT coordinates aspects related to: Resources / Software / Repositories / Data storage / Artificial Intelligence

contacts:

<u>cfanelli@mit.edu</u> (Computing Team)
<u>osbornjd@ornl.gov</u> (Computing & Software WG)

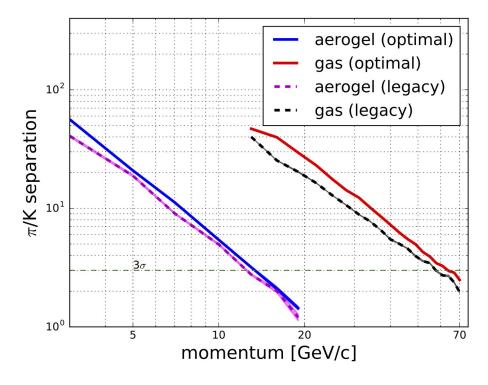
Activities: Documentation and Communications

- To help with simulation and software production, ECCE (recent email from C. Dean on behalf of the simulations and computing teams) put together a documentation webpage here:
 - ECCE@EIC Software Documentation https://ecce-eic.github.io/
 - Fast tutorial on macros: https://github.com/ECCE-EIC/macros.
 - mattermost channel (https://chat.sdcc.bnl.gov/eic/channels/fun4all-ecce)
- Storage place to get started, https://eic.github.io/resources/overview.html;
- ECCE Simulation Workshop, https://indico.bnl.gov/event/11112/
 - Tutorial sessions, e.g, Joe Osborn: <u>From Simulation to Reconstruction to Analysis</u>
- Will show few slides on Al in this presentation

Artificial Intelligence

- ECCE with the creation of a WG <u>dedicated</u> to Artificial Intelligence recognizes the key-role that Al can play in the realization of the future Electron Ion Collider.
- The EIC R&D will be one of the first experimental programs in NP to systematically exploit AI since the detector-design phase.
- For the realization of EIC (~10 years) it is anticipated that AI can contribute to, e.g.,
 Detector Design, PID,
 Reconstruction, Streaming RO, etc.

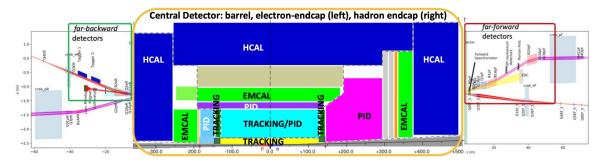
Yellow Report arXiv:2103.05419v2

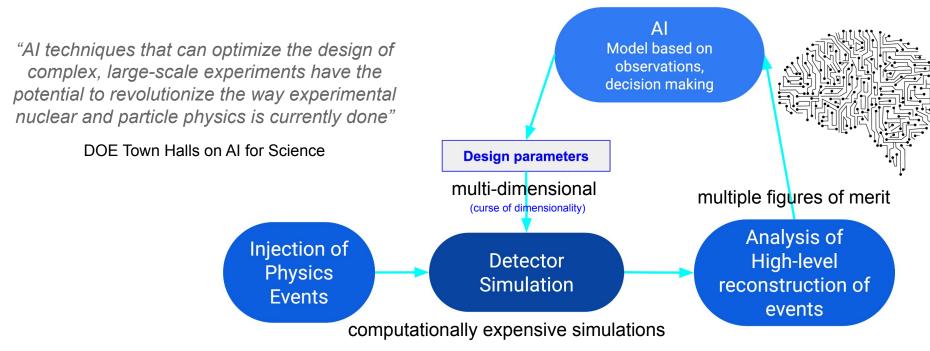

11	11 Detector Aspects 434					
	11.1	Magnet	434			
	11.2	Tracking	436			
	11.3	Electromagnetic Calorimetry	483			
	11.4	Hadron Calorimetry	511			
	11.5	Particle Identification	519			
	11.6	Far-Forward Detectors	546			
	11.7	Far-Backward Detectors	572			
	11.8	Considered Technologies and Detector Challenges	583			
	11.9	Polarimetry	591			
	11.10	Readout Electronics and Data Acquisition	606			
	11.11 Software, Data Analysis and Data Preservation					
	11.12	Artificial Intelligence for the EIC Detector	634			

The YR already contains the first application of AI for EIC (for the dRICH design)

PhotoSensor Aerogel + Filter 3D Downstream View 3D Upstream view Spherical Mirror 160 cm Sector Side View Sector Front View Gas volume 60° PhotoSensor Aerogel + Filter

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter


Al-optimized detector design: The dRICh example in the YR



E. Cisbani, A. Del Dotto, <u>CF*</u>, M. Williams et al. JINST 15.05 (2020): P05009.

EIC Central Features Detector 2D: 3 integrated regions: Far-backward, Central, Far-forward

Detector Optimization Workflow

Planned Activities

- CT aligned with ECCE timeline: Al for optimization from the first simulation campaign
- More details on how to coordinate these efforts (problems/tasks/priorities, workforce, resources etc) discussed in dedicated meetings (see next slides)
- Interested people (ideally with some prior knowledge of AI) welcome to contribute to this "task force"!
- Considering the possibility of office hours.

Today, 12 April

Contact: cfanelli@mit.edu

AI4EIC Workshop

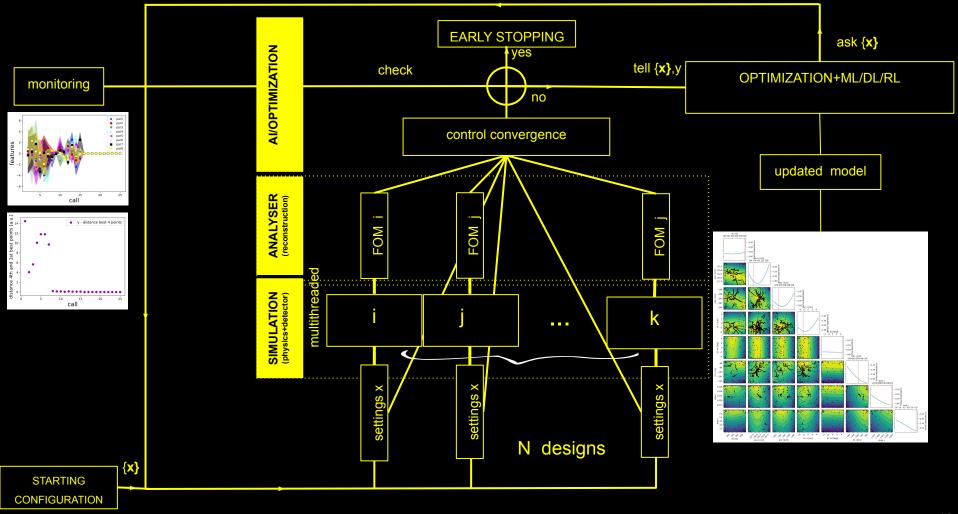
- [1] Al4NP Wokshop, JLab. Report from the Al For Nuclear Physics Workshop, arXiv:2006.05422 (2020)
 - 2] Joint Machine Learning Workshop, GlueX Panda EIC, 2020.
 - [3] Al4NP Winter School (11-15 January 2021)
- Strategic moment to discuss how to fully take advantage of the new opportunities offered by AI to advance research, design, and operation of EIC.
- Growing convergence of AI, Data, and HPC provides a once in a generation opportunity to profoundly accelerate scientific discovery, create synergies across scientific areas.
- The interest of the community evidenced by the number of contributions and attendance of workshops/schools dedicated to AI in Nuclear Physics, e.g. the [1, 2, 3]
- The AI4EIC workshop will bring together the communities directly using AI technologies and provide a venue for discussion and identifying the specific needs and priorities for EIC.
- This will be a series of workshops. The first one will have a focus on experimental applications, therefore Al4EIC-exp.

- Detector Optimization
- Fast Simulations / Digital-twins / Surrogate
- Reconstruction / PID
- Autonomous control / Intelligent Systems
- DAQ / event filtering / near real-time
- Computing frontiers

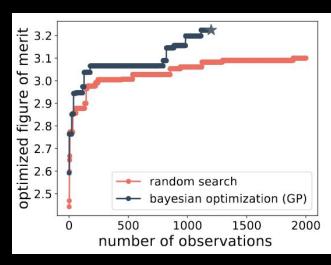
Action Items

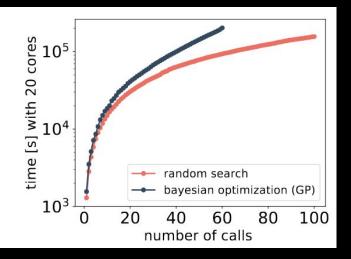
- Software up and running
- ✓ Al framework allowing for design optimization
- Create mailing list for ECCE-CT (this week)
- CT co-convener and AI WG convener (expected in << 2 weeks)
- Future ECCE workshops; Office hours and meeting schedule (bi-weekly?) (TBD)

Initial Steps:


- topics above / resources, address computing space to store MC in conjunction with simulations WG; meeting ~ a week from now
- consolidate list of optimization tasks; ~ 2 weeks
- build prototype simulation pipeline (from simulation to analysis) and optimize with AI in order to generalize/extend to other sub-detectors / more sub-detectors together for the simulation campaign; (expected by end of April)

Summary

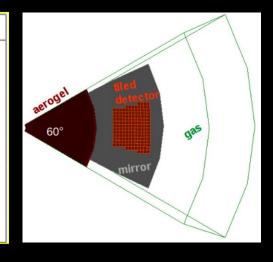

- The Computing Team will provide:
 - Computing & Software support to the other teams
 - Al-support for the optimization of the ECCE design (CT will coordinate tasks/resources, implementation, prioritize parts to optimize, etc)
 - Support/coordination of technical aspects (how to/where to, wiki/indico, repos, resources, etc)
- Get started with simulations! Reach out to us and simulation team for any issues.
- People willing to get involved in detector design with AI (possibly with prior knowledge of AI) or for any ideas/suggestions, please contact: cfanelli@mit.edu.
 - ECCE wiki (under construction) https://wiki.bnl.gov/eicug/index.php/ECCE
 - Lectures on Detector Design Optimization, C. Fanelli, Al4NP Winter School https://github.com/cfteach/Al4NP detector opt
 - Computing resources:
 - available at BNL and JLab, https://eic.github.io/resources/overview.html
 - SDDC@BNL, https://wiki.bnl.gov/eic/index.php/Computing


SPARES

Comparison with Random Search

Each call: 400 tracks generated/core 20 cores

1 design point ~ 10 mins/CPU

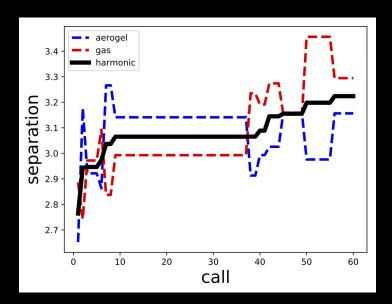

Budget: 100 calls

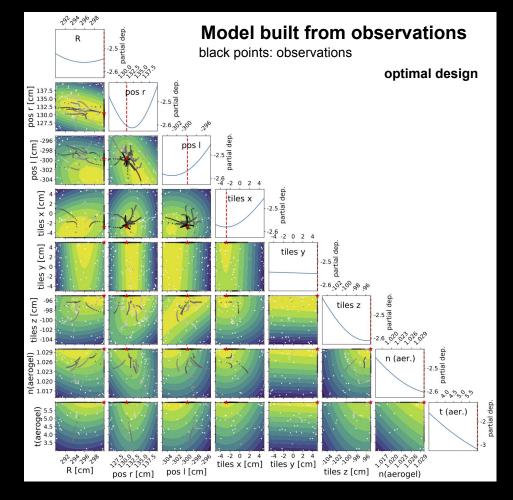
- BO with GP scales cubically with number of observations.
- Bayesian optimization methods are more promising because they offer principled approaches to weighting the importance of each dimension.
- For this 8D problem even with 50 cores, RS looks unfeasible due to the curse of dimensionality.
 - Recall that the probability of finding the target with RS is 1-(1-v/V)^T, where T is trials, v/V is the volume of target relative to the unit hypercube

Construction Constraints on Design Parameters

The idea is that we have a bunch of parameters to optimize that characterize the detector design. We know from previous studies their ranges and the construction tolerances.

parameter	description	range [units]	tolerance [units]
R	mirror radius	[290,300] [cm]	100 [μm]
pos r	radial position of mirror center	[125,140] [cm]	100 [μm]
pos 1	longitudinal position of mirror center	[-305,-295] [cm]	100 [μm]
tiles x	shift along x of tiles center	[-5,5] [cm]	100 [μm]
tiles y	shift along y of tiles center	[-5,5] [cm]	100 [μm]
tiles z	shift along z of tiles center	[-105,-95] [cm]	100 [μm]
n _{aerogel}	aerogel refractive index	[1.015,1.030]	0.2%
taerogel	aerogel thickness	[3.0,6.0] [cm]	1 [mm]




Ranges depend mainly on mechanical constraints and optics requirements.

These requirements can change in the next future based on inputs from prototyping.

The Model and the Optimized FoM

$$N\sigma = rac{||\langle heta_K
angle - \langle heta_\pi
angle||\sqrt{N_\gamma}}{\sigma_{ heta}^{1p.e.}}$$

