Fast and full simulations in Geant4 for large-scale detector systems at the EIC with a plug and play modular approach

Makoto Asai (SLAC) March 25, 2021

Requirements

- Requirements
 - ability to reuse existing simulation works
 - ease of switching detector options with comparable levels of detail
 - ease of switching between detailed and coarse detector descriptions
 - ease of leveraging new and rapidly evolving
 - technologies, e.g., AI/ML
 - computing hardware, e.g., heterogeneous architectures

Initial work plan (1)

- These requirements will be fulfilled by utilizing the "region" mechanism of Geant4.
 - Each detector component is represented as a region, where the followings are taken care of.
 - geometry description including different levels of detail,
 - physics options including fast simulation and unique physics model configurations,
 - and detector responses based on geometry and physics options
 - Regions should not interfere to each other.
 - Sanity checking tools provided.
 - We will collaborate with developers of existing simulators, i.e. EicRoot, Eic-Smear, ESCalate and Fun4All.
- We avoid unnecessary wrappers and external dependencies. We use native Geant4 functionalities as much as possible.
 - Initially we try to cope with external dependencies inheriting from existing simulators by encapsulating them into a region.

Initial work plan (2)

- The simulation application will be built on top of the newly coming Geant4 version 11.
 - Tasking (both PTL and TBB) mechanism is introduced.
 - Enabling heterogeneous hardware configuration
 - Current Geant4 v10.7 is an alpha version of Geant4 v11. Beta release of version 11 is scheduled in June.
- Data exchange format / tool for geometry, event data, detector parameters, etc.
 - We won't invent a new wheel. We will join the discussion of EIC SW.
- Concerning about physics models, we will start with building a common EIC physics list
 - With surveying test-beam results for its validation
 - Importing/integrating test-beam geometries if available
 - With developing options for
 - Deferent physics parameters per region
 - Fast simulation / event biasing per region

