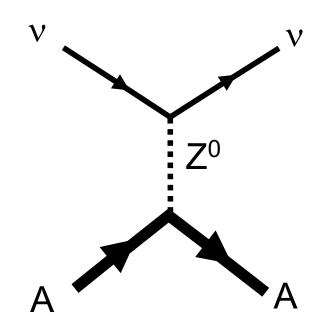
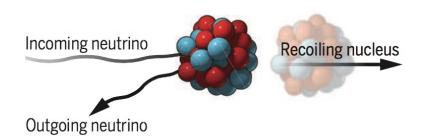
CEVNS Backgrounds

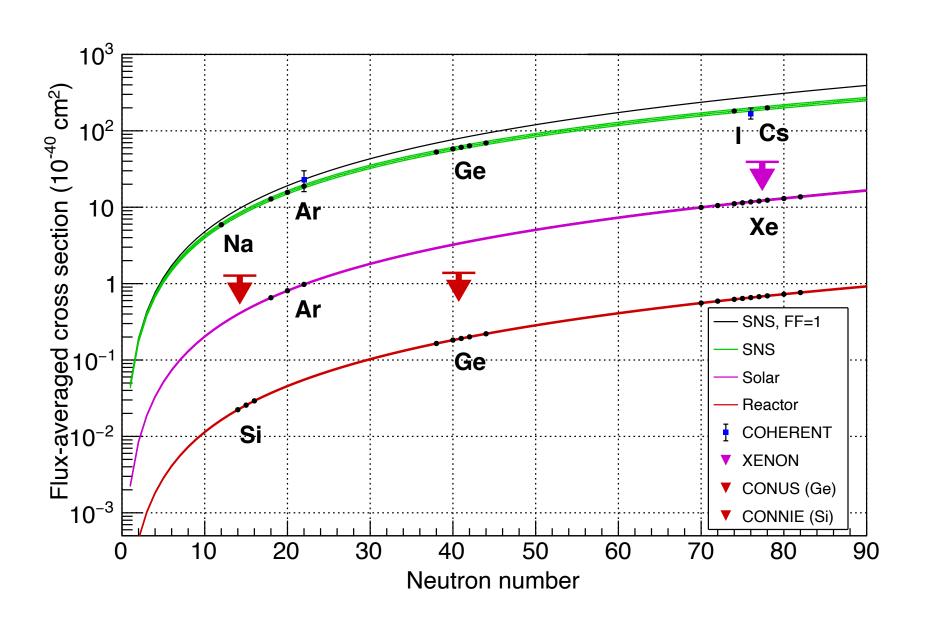
... focusing on the "friendly fire" variety




Kate Scholberg Wondram workshop June 24, 2021

Coherent elastic neutrino-nucleus scattering (CEvNS)

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV



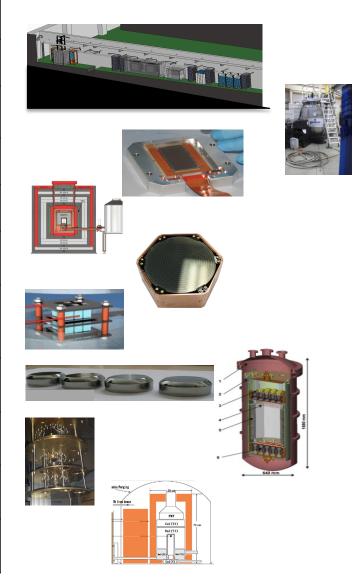
Nucleon wavefunctions
in the target nucleus
are in phase with each other
at low momentum transfer

For QR << 1, [total xscn] ~ A² * [single constituent xscn]

Status of CEvNS measurements

CEVNS Efforts Worldwide

Experiment	Technology	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NuCleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	Reactor
∨GEN	Ge PPC	Russia	Reactor
RED-100	RED-100 LXe dual phase		Reactor
Ricochet Ge, Zn bolometers		France	Reactor
TEXONO	p-PCGe	Taiwan	Reactors

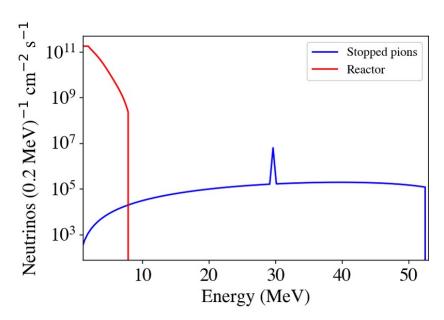

+ DM detectors, +directional detectors +more... many novel low-background, low-threshold technologies

Reactors

CEVNS Efforts Worldwide

Experiment	Technology	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NuCleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	Reactor
∨GEN	Ge PPC	Russia	Reactor
RED-100	LXe dual phase	Russia	Reactor
Ricochet	Ge, Zn bolometers	France	Reactor
TEXONO	p-PCGe	Taiwan	Reactors

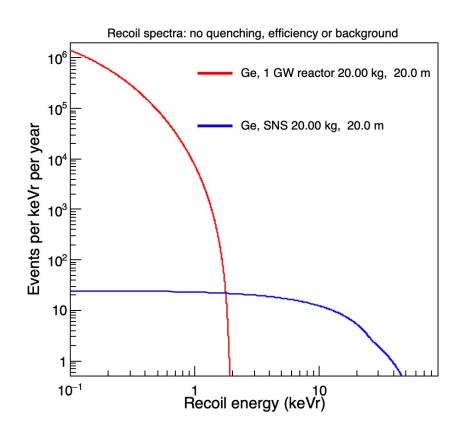
Reactors



+ DM detectors, +directional detectors +more...
many novel low-background, low-threshold technologies

variety of materials

Reactors vs stopped-pion neutrinos for CEvNS



Reactor: huge flux
nuebar only
<~8 MeV
steady state → bkgds hard

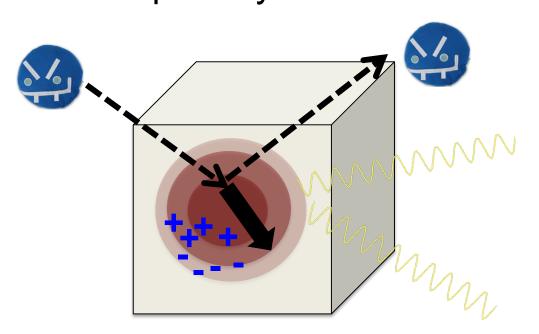
Stopped pions:

lower flux
3 flavors (numu, nue, numubar)
up to ~50 MeV
can be pulsed

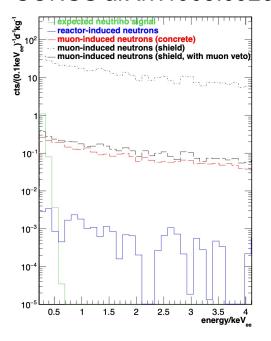
Reactor: higher rate

low energy recoils

Stopped pions:


lower rate higher energy recoils

Backgrounds


Usual suspects:

- cosmogenics
- ambient and intrinsic radioactivity
- detector-specific noise and dark rate

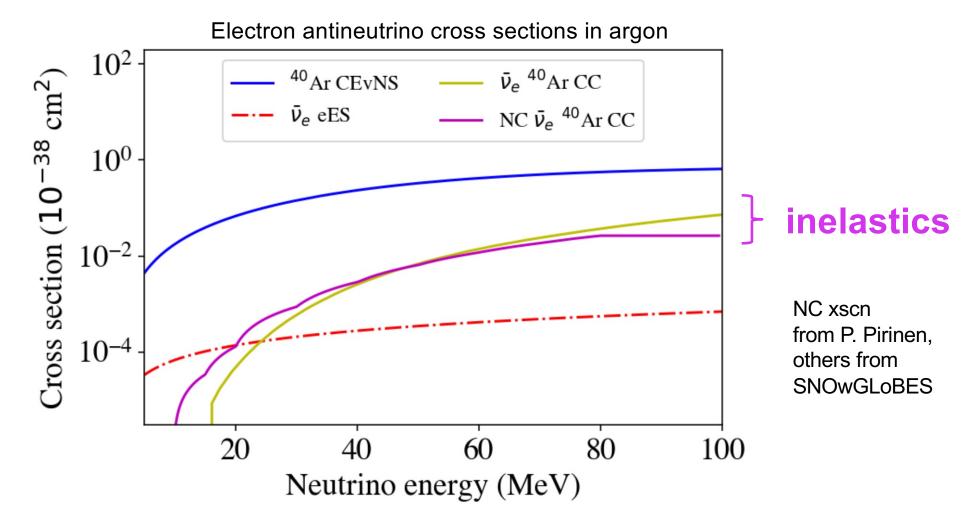
Neutrons are especially not friends*

CONUS arXiv:1903.09269

These are very detector/site/shielding-specific ... nasty ones are correlated with source.

Here will focus on `friendly' neutrino-induced bg ... likely subdominant, but irreducible

Neutrino interactions in the few-few 10's of MeV range

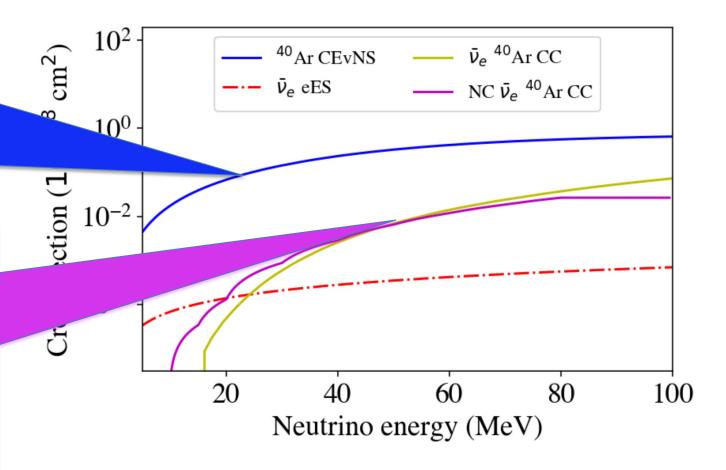

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $ar{ u}_e + p ightarrow e^+ + n$	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$ $\bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1)$
Charged current	e	$\begin{array}{c} \gamma \\ e^{+} \gamma \\ \overline{\nu}_{e} \end{array}$	n Various possible ejecta and
Neutral current	Useful for pointing	Elastic scattering P very low energy recoils	$ u + A \rightarrow v + A^* $ $ v \longrightarrow \gamma $ Coherent elastic (CEvNS)

Neutrino interactions in the few-few 10's of MeV range

inelastics

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $ar{ u}_e + p ightarrow e^+ + n$	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$ $\bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1)$
Charged current	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline \nu_e + p \rightarrow e & + n \\ \gamma \\ \hline e^+ & \gamma \\ \hline \nu_e \\ \hline n & \gamma \end{array}$	n Various possible
Neutral current	ν e	Elastic scattering p	$ u + A \rightarrow v + A^* $ ejecta and deexcitation products
	Useful for pointing	very low energy recoils	$ u + A \rightarrow v + A $ Coherent elastic (CEvNS)

Example: argon*


^{*}not actually the best example, since inelastic interactions have high thresholds wrt reactor v's

Example: argon

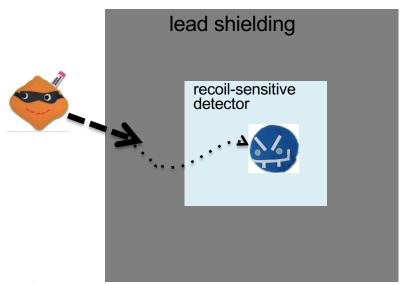
Few inelastics... but they are big

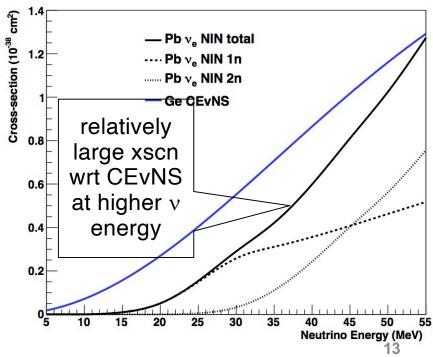
For CEVNS with reactor neutrinos:

Inelastic neutrino interactions can be considered both a signal and a background.

If you just want lots of neutrino counts, doesn't matter

But you do want to know the inelastic contribution (event-by-event or statistically):


- for physics (BSM, nuclear physics)
- for determining neutrino absolute flux and spectrum for any application

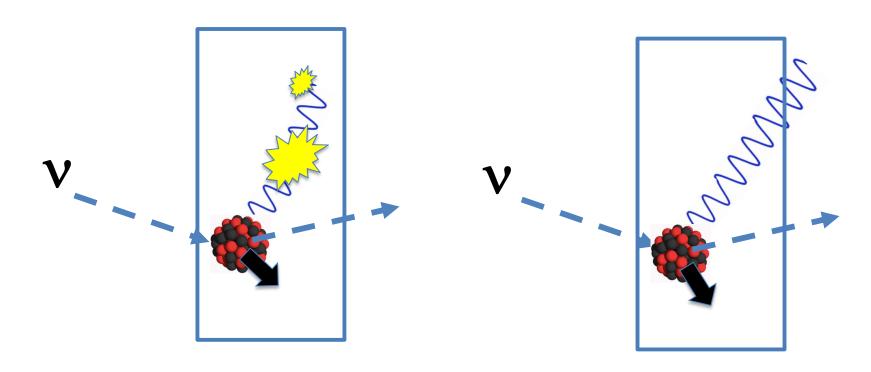

Neutrino Induced Neutrons (NINs)

For example, in lead:

$$v_e$$
 + $^{208}\text{Pb} \rightarrow ^{208}\text{Bi*}$ + e^- CC
1n, 2n emission
 v_x + $^{208}\text{Pb} \rightarrow ^{208}\text{Pb*}$ + v_x NC
1n, 2n, γ emission

- reactor neutrinos are mostly below threshold for NINs in lead
- however there could be some materials which create NINs (poorly known xscns!)
- IBD in shielding (or untagged positrons) also make NINs!

Inelastics as backgrounds for CEvNS


Charged-current:

- Big old lepton (positron for nuebar) usually tags the interaction
- But: can have NINs or gammas in shielding

Neutral-current:

- Cross sections tend to be lower than CC
- However, interaction products are potentially harder to disentangle
 - NINs (nucleons)
 - De-excitation gammas (taggable)
 - Also: hit-and-run bg...(small detectors)

Neutral-current backgrounds for CEvNS

crash & flash:

~nothing in CEvNS ROI (but could look for the flash in higher energy range, as signal in itself)

crash & dash:

no gamma seen, low-energy recoil could fake CEvNS

What is known about inelastic neutrino-nucleus cross sections at low energy? very nucleus-specific!

- a few measurements at stopped-pion energy (not nuebar); only two (on ¹²C) @10% level
- reactor neutrinos on deuterium
- not much else in the way of measurements

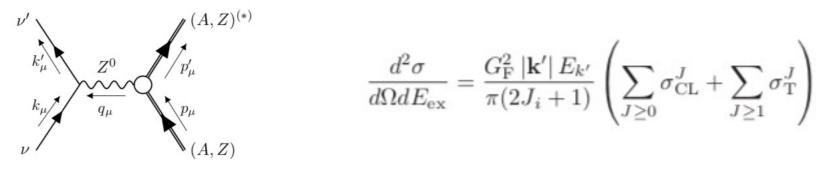
Joseph A. Formaggio and G.P. Zeller: From eV to EeV: Neutrino cross sections ...

1321

TABLE VII. Experimentally measured (flux-averaged) cross sections on various nuclei at low energies (1–300 MeV). Experimental data gathered from the LAMPF (Willis $\ et \ al.$, 1980), KARMEN (Bodmann $\ et \ al.$, 1991; Zeitnitz $\ et \ al.$, 1994; Armbruster $\ et \ al.$, 1998; Maschuw, 1998; Ruf, 2005), E225 (Krakauer $\ et \ al.$, 1992), LSND (Athanassopoulos $\ et \ al.$, 1997; Auerbach $\ et \ al.$, 2001; Auerbach $\ et \ al.$, 2002; Distel $\ et \ al.$, 2003), GALLEX (Hampel $\ et \ al.$, 1998), and SAGE (Abdurashitov $\ et \ al.$, 1999; Abdurashitov $\ et \ al.$, 2006) experiments. Stopped $\ \pi/\mu$ beams can access neutrino energies below 53 MeV, while decay-in-flight measurements can extend up to 300 MeV. The $\ ^{51}$ Cr sources have several monoenergetic lines around 430 and 750 keV, while the $\ ^{37}$ Ar source has its main monoenergetic emission at $\ E_{\nu} = \ 811$ keV. Selected comparisons to theoretical predictions, using different approaches are also listed. The theoretical predictions are not meant to be exhaustive.

Isotope	Reaction Channel	Source	Experiment	Measurement (10 ⁻⁴² cm ²)	Theory (10 ⁻⁴² cm ²)
					• • • • • • • • • • • • • • • • • • • •
^{2}H	$^2\mathrm{H}(u_e,e^-)pp$	Stopped π/μ	LAMPF	$52 \pm 18(tot)$	54 (IA) (Tatara, Kohyama,
12 C	12C(-, a-)12N	Stammad -/	KARMEN	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$	and Kubodera, 1990)
	$^{12}\text{C}(\nu_e, e^-)^{12}\text{N}_{\text{g.s.}}$	Stopped π/μ Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 0.8(\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979) 9.2 [EPT] (Fukugita, Kohyama,
		stopped n/μ	E223	$10.3 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	and Kubodera, 1988).
		Stopped π/μ	LSND	$8.9 \pm 0.3(\text{stat}) \pm 0.9(\text{sys})$	8.9 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
	$^{12}\text{C}(\nu_e, e^-)^{12}\text{N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})$	5.4–5.6 [CRPA] (Kolbe, Langanke,
	$C(\nu_e, e)$ in	Stopped n/μ	KAROVILIV	5.1 = 0.0(stat) = 0.5(sys)	and Vogel, 1999)
		Stopped π/μ	E225	$3.6 \pm 2.0 (tot)$	4.1 [Shell] (Hayes and Towner, 2000)
		Stopped π/μ	LSND	$4.3 \pm 0.4(stat) \pm 0.6(sys)$	30 05 05 05 05 05 05 05 05 05 05 05 05 05
	$^{12}\mathrm{C}(u_{\mu}, \nu_{\mu})^{12}\mathrm{C}^*$ $^{12}\mathrm{C}(u, u)^{12}\mathrm{C}^*$	Stopped π/μ	KARMEN	$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
		Stopped π/μ	KARMEN	$10.5 \pm 1.0(\text{stat}) \pm 0.9(\text{sys})$	10.5 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
	$^{12}\text{C}(\nu_{\mu}, \mu^{-})X$	Decay in flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750–1780 [CRPA] (Kolbe, Langanke,
					and Vogel, 1999)
					1380 [Shell] (Hayes and Towner, 2000)
					1115 [Green's Function] (Meucci, Giusti,
	10	EC 8 19200 N	te 2000000000		and Pacati, 2004)
	$^{12}\text{C}(\nu_{\mu}, \mu^{-})^{12}\text{N}_{\text{g.s.}}$	Decay in flight	LSND	$56 \pm 8(stat) \pm 10(sys)$	68–73 [CRPA] (Kolbe, Langanke,
					and Vogel, 1999)
56-	56-7 / 756-2	~			56 [Shell] (Hayes and Towner, 2000)
⁵⁶ Fe	$^{56}{ m Fe}(\nu_e, e^-)^{56}{ m Co}$	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe, Langanke,
71.0	71 ~ / _\71 ~	51 ~	~	0.0074 . 0.0000/	and Martínez-Pinedo, 1999)
⁷¹ Ga	71 Ga $(\nu_e, e^-)^{71}$ Ge		GALLEX, ave.		0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	0.0055 ± 0.0007 (tot)	0.0070 (01.11) (0.1.11.1007)
¹²⁷ I	$^{127}\text{I}(\nu_e, e^-)^{127}\text{Xe}$	³⁷ Ar source	SAGE	0.0055 ± 0.0006 (tot)	0.0070 [Shell] (Bahcall, 1997)
1	$\Gamma(\nu_e, e^-)^{127}$ Xe	Stopped π/μ	LSND	$284 \pm 91(stat) \pm 25(sys)$	210–310 [Quasiparticle]
					(Engel, Pittel, and Vogel, 1994)

What about theoretical predictions?


Available calculations are not copious, but improving

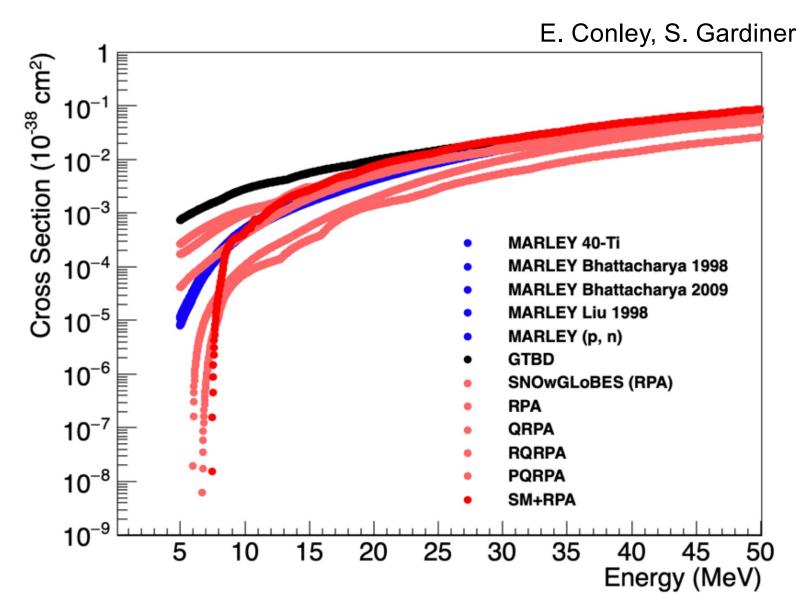
Example:

Neutral-current neutrino-nucleus scattering off Xe isotopes

arXiv:1804.08995

P. Pirinen¹, J. Suhonen¹, and E. Ydrefors²

$$\sigma_{\mathrm{CL}}^{J} = (1 + \cos \theta) \left| \langle J_f || \mathcal{M}_J(q) || J_i \rangle \right|^2 + (1 + \cos \theta - 2b \sin^2 \theta) \left| \langle J_f || \mathcal{L}_J(q) || J_i \rangle \right|^2$$


$$+ q E_{\mathrm{exc}} (1 + \cos \theta) \times 2 \mathrm{Re} \left\{ \langle J_f || \mathcal{M}_J(q) || J_i \rangle^* \langle J_f || \mathcal{L}_J(q) || J_i \rangle \right\},$$

$$\sigma_{\mathrm{T}}^{J} = \left(1 - \cos\theta + b\sin^{2}\theta\right) \left[\left| \langle J_{f} || \mathcal{T}_{J}^{\mathrm{mag}}(q) || J_{i} \rangle \right|^{2} + \left| \langle J_{f} || \mathcal{T}_{J}^{\mathrm{el}}(q) \rangle \right|^{2} \right]$$

$$\mp \frac{E_{k} + E_{k'}}{q} (1 - \cos\theta) \times 2 \mathrm{Re} \left\{ \langle J_{f} || \mathcal{T}_{J}^{\mathrm{mag}}(q) || J_{i} \rangle \langle J_{f} || \mathcal{T}_{J}^{\mathrm{el}} || J_{i} \rangle \right\},$$

Development of MARLEY is promising

Example of variation in theory predictions at low energy

This is for v_e CC, but gives an idea of (large) uncertainties for these kinds of calculations

What do we need?

- Direct measurements @ reactor energy, if possible
- More theory!
 (nuclear structure theorists, please help!)
- Measurements to validate theory
 - stopped-pion source may still help with this, even if energy range and flavors do not match reactor fluxes
 - other scattering (e.g. (p,n)) can also help
- Priority materials:

Ge, Si, Ca, W, O, Pb, Xe, Na, I, Ar, Fe, Al, Zn, S, F [COHERENT: Ar, Ge, Na, I, Pb, Fe @SNS]

Summary

- Reactor CEvNS has high rate, but very low recoil energy
- Backgrounds are the primary difficulty
- Source-correlated neutrinos create non-CEvNS (inelastic) background
 - probably quite small at reactor energies but large uncertainties
- Both measurements and theory welcome