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From the detector to the physics results
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Environment in sPhenix, LHC, HL-LHC and FCC-hh

• Overcome the pileup problem by 
• tracing all the paths left by the particles back to the 

center of the detector, pinpointing all the collisions 
points (called vertices) that occurred at a proton-
bunch crossing

• decide which particles originated from which vertex
•  ==> Need Tracking for early background 

rejection @ Trigger level

mu= # of simultaneous pp collision

sPhenix



Real Time Tracking
We want to use it early on  

in the Trigger Decision 
Latency: 10 μs 

Software tracking —> order of milliseconds to 
perform tracking 

Move to hardware —> FPGAs much faster

Huge combinatorial 
problem, need optimized 

algorithms 



How?

• Problem: Deeper networks greatly increase the number of 
parameters and model sizes ==> increase the 
computational, memory bandwidth, and storage demands. 

• Solution: Adopt more compact low precision data types 

Input track image Stub features Segment features Higher level

 features

To meet the future experimental 
needs in term of latency need 
optimized algorithms ==> Machine 
learning

gFEX

FELIX

• Convolutional NN particular suitable, why?
• Tracking data exhibits some of the traits of natural images: translational symmetries, locality etc
• The initial layer of a CNN for tracking would identify stubs of compatible hits in adjacent layers.
• Later layers of the network would then connect stub features together to form track segments, and so on until a 

model of an entire track or set of tracks is constructed.

• Problem: GPU still too slow for the required latency O(ms)
• Solution: Use FPGAs: have distributed on-chip memory as well as large 

degrees of pipeline parallelism, which fit naturally with the feed-forward 
nature of deep learning inference methods 

• Test  the system using HL-LHC pseudo-data and two boards 
developed at BNL: 
• FELIX, data routing system , gFEX  with four FPGAs with high speed 

interconnects



Track Trigger Challenges
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Tracking has to be very fast  
• Process in parallel: decompose detector data into 

independent regions (64 Towers) 
• Data reduction: each cluster of adjacent pixels/strips 

defines one “hit” 
• Perform tracking in two steps: 
★ Find track candidates: Roads 
★ Perform full-resolution track fitting inside Roads  
★Combinatorics reduced 

• Each of the pieces of the full chain can be performed using 
Machine Learning



Hough Transform for Track finding
• The track of a charged particle in the transverse plane (x-y plane) of the ATLAS tracker has the shape of a 

circular arc which can be described by pT and its initial angular direction φ0.  

• If a vertex constraint is imposed, the clusters on track obey: 

• where (r1,ϕ1) are the cluster coordinates, q is the charge of the particle, and A ≈ 3×10−4 GeV mm−1 is the 
curvature constant for the 2T magnetic field of the tracker. 

• Initialize a histogram (accumulator) with the parameter space to search.  

• Group hits into super strips in ϕ. 

• For each point, increment the histogram for all possible curves going through that point.  

• Points on the same curve will intersect in the parameter space 

• Threshold accumulator at a certain value. 

• Extract the hits for all bins passing the threshold.
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Machine Learning for tracking
• In general, we have been studying using ML 

for tracking on FPGAs 
• Approaching from the other end - minimal 

complexity that can fulfill the requirements 
while fitting on a FPGA 

• For Heterogeneous Commodity TF, main focus 
is on a ML module to do duplicate removal/
fake rejection 

• While the consideration are to fit this on a 
FPGA, ensuring that the NNs can be used on 
CPUs/GPUs without hassle  
• Already using ONNX interface to do 

performance studies in an Athena 
environment

8

Target for ML studies

System block diagram for the system  
being considered in the  

Heterogeneous Commodity TF



Problem setup
• Initial studies performed without assuming what algorithm the track candidate will come 

from 
• To keep the conclusions as generic as possible 

• Problem: Classify a vector of x/y/z position coordinates as coming from a ‘track’ 
• True combination: Hit combinations from offline track reconstruction 
• Fake combinations: Some dependancy on the exact definition 

• Only strip layers were used, with hits both in the Barrel and End Cap 
• But easily configurable 
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Layer 
Combine hits  

that pass through  
successive layers

Module 
Combine random hits  
in modules that a true  
track would traverse

Close by 
Replacing random hits  
with other nearby ones 

around a true track

Phi rotated 
Find a hits modules that  

a random phi rotated  
track would traverse

Fake Hit  
combinations



Initial Results
• Very promising results - allowed us to fine tune the 

recipe 
• Architecture - simple dNN performs well, though cNNs 

perform just as well with less training params 
• Pre-processing - Some is required 

• Rotate hits to remove the phi DOF 
• Scale X/Y/Z coordinate such that max value is O(1) 
• Order hits by R
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Removing the rotational  
degree of freedom

dNN
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Overlap/Fake removal after Hough Transform
• In the TF system, the Hough Transform step will provide 

the hit combinations 
• NN has two tasks: 

• Pick the best track candidate in a given road 
• Reject fake tracks to improve purity  

• Train the network in the 1 pixel + 7 strip layer configuration 
• Fake tracks: HT tracks from 1 single particle + pileup 

event with truth probability < 0.7 
• True tracks: Offline + truth tracks from single particle + 

pileup events 
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Can go up to 100s  
tracks per road

ROC integral is ~1No overtraining observed

N tracks per road



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NN Score

3−10

2−10

1−10

1

ATLAS Internal
TrackingNN

Initial results
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• Using the current working setup for the Hough transformation 
• mu=200, with η ∈ [0.1,0.3] 

• Reject any tracks with NN score < 0.2 & pick the highest NN scored track in a road 
• ~ 100x reduction in the number of tracks.

Evaluated NN on HT output

Reco Total Selected Selected &&  
not matched

3,590,000 41734 13472
Purity 0.08% 6.6%

-Selection 
Efficiency - 1.2%

With respect 
to truth Total

Matched to 
atleast one HT 

track

Selected &&  
matched

3103 2910 2769
Absolute Eff - 93.8% 89.2%

Eff of NN cut 95.2%

Preliminary

Caveat: These are absolute efficiency wrt the truth,  
updated results will be wrt offline tracks as per the TF mandate



NN cut threshold
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• Choice of NN > 0.20 is arbitrary  
• Depending on how much we can afford, can increase the selection efficiency of the NN

Reco Total NN > 0.2 NN > 0.1 NN > 0.05 NN > 0.01 NN > 0.001 NN > 0

3,590,000 41734 47937 54073 67938 89813 229324
Purity (%) 0.08% 6.6% 5.8% 5.2% 4.2% 3.2% 1.3%

Selection 
Efficiency (%) - 1.2% 1.3% 1.5% 1.9% 2.5% 6.4%

Truth Efficiency Total NN > 0.2 NN > 0.1 NN > 0.05 NN > 0.01 NN > 0.001 NN > 0

3103 2769 2795 2826 2847 2862 2883

All Truth && HT 95.2% 96.0% 97.1% 97.8% 98.4% 99.1%

Preliminary



Efficiency as a function of pT
Truth tracks
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Efficiency of HT 
Efficiency of after NN cut 
Efficiency of NN cut wrt to HT

NN > 0.2NN > 0.2



Tracks rejected by the NN
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These track have Truth probability score > 0.7, but rejected by NN 
Need to check if these are reconstructed by reco
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NN on FGPA
• To run NN inference on a FPGA, need to quantize and synthesize it 
• HLS4ML framework: Generates C-code that Xilinx tools can synthesize  
• Trained with quantized aware nodes - QKeras 

• Weights & bias are quantized while training - easily translatable on FPGA without any loss 
• First pass at optimizing the hyper parameters - Fine tuning to come when HT parameters are 

fixed
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Optimizing number of bits  
to represent weights 

(different colours are different fakes types)

Optimizing the number of nodes in the NN



FPGA: Resource estimates
• First estimates - Can be optimized for latency and for resource usage 
• Will need a few more resources for preprocessing the input
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FPGA resources 
Xilinx FPGA AlveoU250

Latency

Preliminary



Pt regression
• Alex started looking into: 

• Simultaneous track classification and pt regression  
• Given a sequence of hits, determine the track parameters (focus on pt for now)  
• Does not require input of magnetic field, detector geometry info, etc. 

• Need a more complicated network as expected
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Conclusions

19

• First pass at using ML for duplicate removal after HT 
• Initial results look extremely promising - further tuning to come once HT 

settings are finalized 
• Have an idea of the resource estimates for FPGA usage 

• NN also executable on CPUs/GPUs 
• Further iterations on going to allow for estimate of efficiency with respect to offline 

tracking  
• Start looking at a coarse track fit - initial studies ongoing



Backup



NN weights
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