
ML in Tracking

Alex Gekow1, Antonio Boveia1, JC Zeng2, Viviana Cavaliere3, Will Kalderon3, Haider Abidi3, Hao Xu, Elena Zhivun, Filiberto Bonini,
Shinjae Yoo,

April 16, 2021

1 - Ohio State University  
2 - UIUC  
3 - BNL

Most of the slides made by Haider

From the detector to the physics results

2

Detector Reconstruction

Data analysis

Trigger

Publication

1KHz
Event size:1.6Mb

rate: 40 MHz
~75 Tb/s 1Hz

1 observed Higgs event in a trillion (1012) pp collisions

From the detector to the physics results

2

Detector Reconstruction

Data analysis

Trigger

Publication

1KHz
Event size:1.6Mb

rate: 40 MHz
~75 Tb/s 1Hz

1 observed Higgs event in a trillion (1012) pp collisions

Environment in sPhenix, LHC, HL-LHC and FCC-hh

• Overcome the pileup problem by
• tracing all the paths left by the particles back to the

center of the detector, pinpointing all the collisions
points (called vertices) that occurred at a proton-
bunch crossing

• decide which particles originated from which vertex
• ==> Need Tracking for early background

rejection @ Trigger level

mu= # of simultaneous pp collision

sPhenix

Real Time Tracking
We want to use it early on

in the Trigger Decision
Latency: 10 μs

Software tracking —> order of milliseconds to
perform tracking

Move to hardware —> FPGAs much faster

Huge combinatorial
problem, need optimized

algorithms

How?

• Problem: Deeper networks greatly increase the number of
parameters and model sizes ==> increase the
computational, memory bandwidth, and storage demands.

• Solution: Adopt more compact low precision data types

Input track image Stub features Segment features Higher level

 features

To meet the future experimental
needs in term of latency need
optimized algorithms ==> Machine
learning

gFEX

FELIX

• Convolutional NN particular suitable, why?
• Tracking data exhibits some of the traits of natural images: translational symmetries, locality etc
• The initial layer of a CNN for tracking would identify stubs of compatible hits in adjacent layers.
• Later layers of the network would then connect stub features together to form track segments, and so on until a

model of an entire track or set of tracks is constructed.

• Problem: GPU still too slow for the required latency O(ms)
• Solution: Use FPGAs: have distributed on-chip memory as well as large

degrees of pipeline parallelism, which fit naturally with the feed-forward
nature of deep learning inference methods

• Test the system using HL-LHC pseudo-data and two boards
developed at BNL:
• FELIX, data routing system , gFEX with four FPGAs with high speed

interconnects

Track Trigger Challenges

6

Tracking has to be very fast
• Process in parallel: decompose detector data into

independent regions (64 Towers)
• Data reduction: each cluster of adjacent pixels/strips

defines one “hit”
• Perform tracking in two steps:
★ Find track candidates: Roads
★ Perform full-resolution track fitting inside Roads
★Combinatorics reduced

• Each of the pieces of the full chain can be performed using
Machine Learning

Hough Transform for Track finding
• The track of a charged particle in the transverse plane (x-y plane) of the ATLAS tracker has the shape of a

circular arc which can be described by pT and its initial angular direction φ0.

• If a vertex constraint is imposed, the clusters on track obey:

• where (r1,ϕ1) are the cluster coordinates, q is the charge of the particle, and A ≈ 3×10−4 GeV mm−1 is the
curvature constant for the 2T magnetic field of the tracker.

• Initialize a histogram (accumulator) with the parameter space to search.

• Group hits into super strips in ϕ.

• For each point, increment the histogram for all possible curves going through that point.

• Points on the same curve will intersect in the parameter space

• Threshold accumulator at a certain value.

• Extract the hits for all bins passing the threshold.

7

Machine Learning for tracking
• In general, we have been studying using ML

for tracking on FPGAs
• Approaching from the other end - minimal

complexity that can fulfill the requirements
while fitting on a FPGA

• For Heterogeneous Commodity TF, main focus
is on a ML module to do duplicate removal/
fake rejection

• While the consideration are to fit this on a
FPGA, ensuring that the NNs can be used on
CPUs/GPUs without hassle
• Already using ONNX interface to do

performance studies in an Athena
environment

8

Target for ML studies

System block diagram for the system
being considered in the

Heterogeneous Commodity TF

Problem setup
• Initial studies performed without assuming what algorithm the track candidate will come

from
• To keep the conclusions as generic as possible

• Problem: Classify a vector of x/y/z position coordinates as coming from a ‘track’
• True combination: Hit combinations from offline track reconstruction
• Fake combinations: Some dependancy on the exact definition

• Only strip layers were used, with hits both in the Barrel and End Cap
• But easily configurable

9

Layer
Combine hits

that pass through
successive layers

Module
Combine random hits
in modules that a true
track would traverse

Close by
Replacing random hits
with other nearby ones

around a true track

Phi rotated
Find a hits modules that

a random phi rotated
track would traverse

Fake Hit
combinations

Initial Results
• Very promising results - allowed us to fine tune the

recipe
• Architecture - simple dNN performs well, though cNNs

perform just as well with less training params
• Pre-processing - Some is required

• Rotate hits to remove the phi DOF
• Scale X/Y/Z coordinate such that max value is O(1)
• Order hits by R

10

Removing the rotational
degree of freedom

dNN

0 10 20 30 40 50 60 70 80 90 100
Track Probability

0.02

0.04
0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
om

al
iz

ed
 E

ve
nt

s

All HT Tracks
ATLAS Internal

Overlap/Fake removal after Hough Transform
• In the TF system, the Hough Transform step will provide

the hit combinations
• NN has two tasks:

• Pick the best track candidate in a given road
• Reject fake tracks to improve purity

• Train the network in the 1 pixel + 7 strip layer configuration
• Fake tracks: HT tracks from 1 single particle + pileup

event with truth probability < 0.7
• True tracks: Offline + truth tracks from single particle +

pileup events

11

Can go up to 100s
tracks per road

ROC integral is ~1No overtraining observed

N tracks per road

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NN Score

3−10

2−10

1−10

1

ATLAS Internal
TrackingNN

Initial results

12

• Using the current working setup for the Hough transformation
• mu=200, with η ∈ [0.1,0.3]

• Reject any tracks with NN score < 0.2 & pick the highest NN scored track in a road
• ~ 100x reduction in the number of tracks.

Evaluated NN on HT output

Reco Total Selected Selected &&
not matched

3,590,000 41734 13472
Purity 0.08% 6.6%

-Selection
Efficiency - 1.2%

With respect
to truth Total

Matched to
atleast one HT

track

Selected &&
matched

3103 2910 2769
Absolute Eff - 93.8% 89.2%

Eff of NN cut 95.2%

Preliminary

Caveat: These are absolute efficiency wrt the truth,
updated results will be wrt offline tracks as per the TF mandate

NN cut threshold

13

• Choice of NN > 0.20 is arbitrary
• Depending on how much we can afford, can increase the selection efficiency of the NN

Reco Total NN > 0.2 NN > 0.1 NN > 0.05 NN > 0.01 NN > 0.001 NN > 0

3,590,000 41734 47937 54073 67938 89813 229324
Purity (%) 0.08% 6.6% 5.8% 5.2% 4.2% 3.2% 1.3%

Selection
Efficiency (%) - 1.2% 1.3% 1.5% 1.9% 2.5% 6.4%

Truth Efficiency Total NN > 0.2 NN > 0.1 NN > 0.05 NN > 0.01 NN > 0.001 NN > 0

3103 2769 2795 2826 2847 2862 2883

All Truth && HT 95.2% 96.0% 97.1% 97.8% 98.4% 99.1%

Preliminary

Efficiency as a function of pT
Truth tracks

1 10
 [GeV]

T
p

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Ef
fic

ie
nc

y

HT & selected/All Truth

HT & selected/HT

HT/All Truth

ATLAS Internal

1 10
 [GeV]

T
p

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

Ef
fic

ie
nc

y

Selected/All HT reco
ATLAS Internal

All HT tracks

Caveat: These are absolute efficiency wrt the truth,
updated results will be wrt offline tracks as per the TF mandate

Efficiency of HT
Efficiency of after NN cut
Efficiency of NN cut wrt to HT

NN > 0.2NN > 0.2

Tracks rejected by the NN

1500− 1000− 500− 0 500 1000 1500
z [mm]

0

200

400

600

800

1000

1200

rh
o

[m
m

]

ATLAS Internal

1500− 1000− 500− 0 500 1000 1500
z [mm]

0

200

400

600

800

1000

1200

rh
o

[m
m

]

ATLAS Internal

These track have Truth probability score > 0.7, but rejected by NN
Need to check if these are reconstructed by reco

15

NN on FGPA
• To run NN inference on a FPGA, need to quantize and synthesize it
• HLS4ML framework: Generates C-code that Xilinx tools can synthesize
• Trained with quantized aware nodes - QKeras

• Weights & bias are quantized while training - easily translatable on FPGA without any loss
• First pass at optimizing the hyper parameters - Fine tuning to come when HT parameters are

fixed

16

Optimizing number of bits
to represent weights

(different colours are different fakes types)

Optimizing the number of nodes in the NN

FPGA: Resource estimates
• First estimates - Can be optimized for latency and for resource usage
• Will need a few more resources for preprocessing the input

17

FPGA resources
Xilinx FPGA AlveoU250

Latency

Preliminary

Pt regression
• Alex started looking into:

• Simultaneous track classification and pt regression
• Given a sequence of hits, determine the track parameters (focus on pt for now)
• Does not require input of magnetic field, detector geometry info, etc.

• Need a more complicated network as expected

18

Conclusions

19

• First pass at using ML for duplicate removal after HT
• Initial results look extremely promising - further tuning to come once HT

settings are finalized
• Have an idea of the resource estimates for FPGA usage

• NN also executable on CPUs/GPUs
• Further iterations on going to allow for estimate of efficiency with respect to offline

tracking
• Start looking at a coarse track fit - initial studies ongoing

Backup

NN weights

21

