

ML Service with PanDA and iDDS

Tadashi Maeno (BNL NPPS)
on behalf of PanDA, iDDS and HPO teams

NPPS/Omega/EDG joint meeting
on AI/ML in BNL Physics

16 April 2021

Contents

1. Introduction
2. Intelligent Data Delivery Service (iDDS)
3. Hyperparameter Optimization Service
4. Ongoing Development Activities
5. Conclusion

➢ The goal of the ML service project is to provide a service
to users for ML-related activities with PanDA and iDDS

– Scalability and resource integration through PanDA
ecosystem

– Leveraging new capabilities brought by iDDS
• Decoupling of data delivery and execution
• Description of workflow with directed acyclic graph (DAG)
• Orchestration of workflow management system and data

management system
– Modern user auth and interface

➢ Functions
– Hyperparameter optimization
– Parallel training of multiple ML models
– Elastic distributed training
– Feedback loops to refine new iterations based on the

results of old iterations
– Task graph for advanced workflows
– Visualization

3

Introduction

iDDS tasks accounting (by status)

iDDS HPO

iDDS DAG

Intelligent Data Delivery Service (iDDS)
➢ Joint ATLAS and IRIS-HEP project launched in 2019
➢ Designed to intelligently deliver needed data and

workload in a fine-grained way
➢ Usecases

– Data Carousel
• Jobs start when its own input is ready, no wait for

the full dataset to be transferred
• In production in ATLAS since May 2020
• Solved the issues with the delayed start of data

processing on tape
– HPO (Hyper Parameter Optimization)

• To provide a fully-automated platform for
hyperparameter optimization on top of
geographically distributed GPU resources on the
grid, HPC, and clouds

• Advertised to ATLAS ML users, not specific to
ATLAS

– DAG-based workflow management
• High-level workflows specified by DAGs driving

workload scheduling where successive jobs start
off once all dependent jobs are done
➢ Cascade of chains for multi-step processing

with thousands of jobs per step
➢ Release jobs incrementally for different

steps to avoid long waiting time
• Using DOMA PanDA and iDDS instances for Rubin

Observatory (LSST) exercise

(Wen Guan)

4

Hyperparameter Optimization Service

➢ The problem of choosing a set of optimal hyperparameters
for a ML model

– A hyperparameter = A parameter whose value is used to control
the learning process

– Parameter scan in a search space → a whole training session for
each parameter point → computationally intensive

➢ Usage of GPU resources is crucial
– Well optimal for linear algebra operations that play a key-role in

ML training
– PanDA’s capability to easily integrate heterogeneous resources

➢ HPO in existing ML packages
– Single-function-call pattern

• A kind of a blackbox that manages computing resources behind the
scene

• Not suitable to work with PanDA since PanDA has its own resource
management mechanism

– Ask-and-tell pattern
• Asynchronous execution of sampling, training, and

optimization steps
• Purely point searching, no resource management

6

Hyperparameter Optimization (HPO)

http://www.cmap.polytechnique.fr/~nikolaus.hansen/collette2010Chap14.pdf

evaluation

Steering Container

Evaluation
Container

WAN

lossoptimizer

optimizer

pickled
optimizer

hyperparameter
pointask

tell

Sampling

Optimization

Training

Ingredients of HPO Workflow
➢ Two types of containers

– Steering container - optimisation on central iDDS server
• Generate next HP points with customised method
• A wide range of optimization algorithms are supported

– Evaluation container - training at remote grid (GPU) sites
• Submodule payload contains a ML model definition and

user-specific training
➢ Checkpointing

– Periodically upload checkpoints to Grid
– Download the checkpoint when the same job is retrying
– Resume training if checkpoint is found

7

Harvester Pilot
Job

Job

JEDI
JobJobJob

Hyperparam
setHyperparam

set
Hyperparam

setHyperparam
setHyperparam

pointHyperparam
point

Result

Event
Event

Event

Event

Result
Loss

Hyperparam
setHyperparam

set
Hyperparam

setHyperparam
setHyperparam

point

First search
space

2nd search
space

3rd search
space

Hyperparam
setHyperparam

set
Hyperparam

setHyperparam
setHyperparam

point

Trigger next iteration

Send search space +
optimization algo

Submit pilot + job

Fetch job

Get
ev

en
t

Define new search
space for next

iteration

Execute
optimization

Convert

G
et hyperparam

eter point

Submit jobs + events iDDS

Cho
os

e

hy
pe

rp
ar

am
ete

r

po
int

s

Submit
HPO task

Evaluate
hyperparameter

point

Report loss

8

HPO Service with PanDA and iDDS

optimization

➢ Some ML payloads can be logically broken down
– E.g. break-down of a single physics search session into multiple

search sessions targeting different physics regions/entities
➢ A real ATLAS example: FastCaloGAN, a calorimeter image

generation model
– 300 GANs = 300 models = 100 𝜂 slices x 3 PIDs
– 100 GPU-days to train 300 GANs
– 300 individual tasks in the usual workflow → Bookkeeping nightmare

➢ Segmented HPO
– A single HPO task to optimize all ML models in one-go
– Concurrent training of multiple models, and a smaller training

dataset for each model
• Fast turnaround
• Execution of workloads on more distributed resources

9

Segmented HPO

Object

Model

Models

Usual HPO Segmented HPO

Segments

10

Search Space
For head

Search Space for
left-arm

Job_2 for
left-arm

Job_1 for
head

Loss

Steering

New Search
Space for left-arm

Job_N for
head

Results

Job_1 for
left-arm

Segmented HPO Workflow

Evaluation Container

Training dataset

Input data
for left-arm

Model for left-arm

Segment name

Job

HP for
left-arm

left-arm

Conversion

model_ID

Model for other

Test Results with FastCaloGAN
➢ Tested with 15 GANs (15 segments)

– 3 particle types × 5 𝜂 slices
– Grid search as still needs offline analysis of training results

➢ Staged only relevant data for each GAN rather than
sending the whole data in the training dataset

– Minimized data motion
➢ Reasonable results shown in the plots on the right from a

10K-epoch job running on the BNL GPU site
➢ Foreseen full automation

with more advanced search
algorithm once the procedure
of the offline analysis is well
established

11

(Rui Zhang)

Ongoing Development Activities

Job with
nGPU

Submit Worker+Job
(the yaml file)

Fetch job

Harvester

Evaluation
Container

Pilot

Get
HP po

int

Rep
ort

 lo
ss

Head

Worker

Worker

MPI

Distributed Training with Horovod on Amazon

➢ Multi-GPU payloads with Horovod becoming
popular especially for DNN training

➢ To generalize multi-node job scheduling
– New challenge as multi-node payloads are

used only on some HPCs
➢ CPU-only Head on an on-demand instance +

GPU Workers on spot instances
– Workers can come and go thanks to

resilience in Horovod

yaml file

Create a yaml file with
Head pod(s) +

nGPU/nGPUPerNode
Worker pods

EKS cluster

13

Active Learning
➢ To define the subsequent processing task based on the

decision making in the learning task which analyzes the
results of the previous processing task

– Task chain + decision making between
– A simple DAG usecase

➢ Two types of task templates to generate concrete
tasks, and condition branches to control the workflow

➢ Being integrated in the system

Processing Task Learning Task Processing Task

Point to calculate
Point with good results
Point with bad results
Truth

Calculations in
a narrower band

14

Calculations in
a broader band

Event

RootStats-based Limit Calculation with MC Toys
➢ 10000 MC toys would take approximately 55 hours to run,

according to Xola's slides → Offloading random number
generation to GPU

➢ Materials in Christian’s repo: https://gitlab.cern.ch/chweber/StandardHypoTestInv

➢ Mapping to the system as a chain from toy limit calculations to
post-processing without iteration

– iDDS has a pool of pointers to MC toys
– Each job takes a pointer to calculate the relevant toy limits and

takes another pointer if the walltime is still available
– iDDS triggers the post-processing that combines toy limits to the

final results

JEDI
JobJobJob

Send events

Send spec
 of MC ToysSubmit jobs + events iDDS

Submit a
 calc task

Pool of
pointers

Pilot
Job

Pointer

Convert
Event

Event
Event

Get event
Get pointer

Toy
limits

Toy
limits Toy

limits

Final
results

Post-processing

Trigger
post-processing

Events = Sequential scalars
Pointers = Any dictionaries 15

Upload

https://indico.cern.ch/event/990866/contributions/4169312/attachments/2196366/3713597/Limit_setting_code_presso1.pdf
https://gitlab.cern.ch/chweber/StandardHypoTestInv

Visualization Support for HPO
➢ A visualisation tool MLflow is turned on in Evaluation

Container
– Useful for offline visualisation and analysis

➢ An 𝜶-version of the tool also integrated into PanDA
Monitoring system

– Fetch output from training jobs and centrally spin-up an
MLFlow container to display results

– Extendable to other visualisation tools (Neptune, WandB,
Tensorboard, etc.)

16

User Interface in Jupyter Lab
➢ Jupyter Notebook has become a popular user interface for

research science, data science, data analytics, and ML
➢ Access to PanDA/iDDS from Jupyter

– Seamless integration with user’s analysis environment
– Remote resources through PanDA/iDDS

➢ Easy to provide sophisticated look-and-feel especially for
advanced workflows

– E.g., a visual interface to define and control task networks
for DAG workflows

➢ Thousands of extensions/tools in Jupyter ecosystem

17

Running Dask through PanDA/iDDS
➢ Dask is a Python library for parallel computing

– Very easy to parallelize your analysis written with other Python
projects such as NumPy, pandas, scikit-learn, etc

– Built-in capability for seamless scale-up with clusters
➢ To offer further scale-up with workload partitioning and

distributed remote clusters
– Depending on characteristics and requirements of each workload
– E.g. distributed training with Dask instead of Horovod

➢ Another type of multi-node payloads from the system point of
view

– Trying to reuse the mechanism that has been originally developed
for Horovod payloads

➢ GCP as a part of Google R&D Y2, EKS, other k8s-based resources

18

>> def submit():
 For i in range(n_iterations):
 with concurrent.futures.Executor as e:
 points = space.get_points()
 for p in points.
 e.submit(Client.submit, itr)
 space.optimize()
>> submit()
 * pseudo-code for applicable
 workload

>> c = Client(‘localhost’)
>> c.submit()

>> c = Client(‘remotehost’)
>> c.submit()

Cluster

Containerize

Distributed
on-demand

clusters

Task submission

Jobs

Scale-up with
a cluster

Scale-up with workload partitioning
and distributed remote clusters

➢ PanDA/iDDS-based HPO service is up and running
– Experiment agnostic implementation
– Support of both usual and segmented HPO workflows
– Available for ATLAS users on ATLAS instances and

for other experiment users on DOMA instances
➢ Many ongoing development activities to add

ML-related functions to the service
– HPO service → ML service

➢ Usecase-driven project
– Inputs/feedbacks from (BNL) physics communities

are highly appreciated
• E.g., came up with the idea of RootStats-based limit

calculation in a meeting with Christian
– Happy to support more usecases

HPO Documentation:
 https://panda-wms.readthedocs.io/en/latest/client/phpo.html

19

Conclusions

https://panda-wms.readthedocs.io/en/latest/client/phpo.html

