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➢ The goal of the ML service project is to provide a service 
to users for ML-related activities with PanDA and iDDS

– Scalability and resource integration through PanDA 
ecosystem

– Leveraging new capabilities brought by iDDS
• Decoupling of data delivery and execution
• Description of workflow with directed acyclic graph (DAG)
• Orchestration of workflow management system and data 

management system
– Modern user auth and interface

➢  Functions
– Hyperparameter optimization
– Parallel training of multiple ML models
– Elastic distributed training
– Feedback loops to refine new iterations based on the 

results of old iterations
– Task graph for advanced workflows
– Visualization
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Introduction



iDDS tasks accounting (by status)

iDDS HPO

iDDS DAG

Intelligent Data Delivery Service (iDDS)
➢ Joint ATLAS and IRIS-HEP project launched in 2019
➢ Designed to intelligently deliver needed data and 

workload in a fine-grained way
➢ Usecases

– Data Carousel
• Jobs start when its own input is ready, no wait for 

the full dataset to be transferred
• In production in ATLAS since May 2020
• Solved the issues with the delayed start of data 

processing on tape
– HPO (Hyper Parameter Optimization)

• To provide a fully-automated platform for 
hyperparameter optimization on top of 
geographically distributed GPU resources on the 
grid, HPC, and clouds

• Advertised to ATLAS ML users, not specific to 
ATLAS

– DAG-based workflow management
• High-level workflows specified by DAGs driving 

workload scheduling where successive jobs start 
off once all dependent jobs are done
➢ Cascade of chains for multi-step processing 

with thousands of jobs per step
➢ Release jobs incrementally for different

steps to avoid long waiting time
• Using DOMA PanDA and iDDS instances for Rubin 

Observatory (LSST) exercise

(Wen Guan)
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Hyperparameter Optimization Service



➢ The problem of choosing a set of optimal hyperparameters 
for a ML model

– A hyperparameter = A parameter whose value is used to control 
the learning process

– Parameter scan in a search space → a whole training session for 
each parameter point → computationally intensive

➢ Usage of GPU resources is crucial
– Well optimal for linear algebra operations that play a key-role in 

ML training
– PanDA’s capability to easily integrate heterogeneous resources

➢ HPO in existing ML packages
– Single-function-call pattern

• A kind of a blackbox that manages computing resources behind the 
scene

• Not suitable to work with PanDA since PanDA has its own resource 
management mechanism

– Ask-and-tell pattern
• Asynchronous execution of sampling, training, and

optimization steps
• Purely point searching, no resource management
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Hyperparameter Optimization (HPO)

http://www.cmap.polytechnique.fr/~nikolaus.hansen/collette2010Chap14.pdf
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Ingredients of HPO Workflow
➢ Two types of containers

– Steering container - optimisation on central iDDS server
• Generate next HP points with customised method
• A wide range of optimization algorithms are supported

– Evaluation container - training at remote grid (GPU) sites
• Submodule payload contains a ML model definition and 

user-specific training 
➢ Checkpointing

– Periodically upload checkpoints to Grid
– Download the checkpoint when the same job is retrying
– Resume training if checkpoint is found
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HPO Service with PanDA and iDDS

optimization



➢ Some ML payloads can be logically broken down
– E.g. break-down of a single physics search session into multiple 

search sessions targeting different physics regions/entities
➢ A real ATLAS example: FastCaloGAN, a calorimeter image 

generation model
– 300 GANs = 300 models = 100 𝜂 slices x 3 PIDs 
– 100 GPU-days to train 300 GANs
– 300 individual tasks in the usual workflow → Bookkeeping nightmare

➢ Segmented HPO
– A single HPO task to optimize all ML models in one-go
– Concurrent training of multiple models, and a smaller training 

dataset for each model
• Fast turnaround
• Execution of workloads on more distributed resources
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Test Results with FastCaloGAN
➢ Tested with 15 GANs (15 segments)

– 3 particle types × 5 𝜂 slices
– Grid search as still needs offline analysis of training results

➢ Staged only relevant data for each GAN rather than 
sending the whole data in the training dataset

– Minimized data motion
➢ Reasonable results shown in the plots on the right from a 

10K-epoch job running on the BNL GPU site 
➢ Foreseen full automation

with more advanced search
algorithm once the procedure
of the offline analysis is well
established
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(Rui Zhang)
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Distributed Training with Horovod on Amazon

➢ Multi-GPU payloads with Horovod becoming 
popular especially for DNN training

➢ To generalize multi-node job scheduling
– New challenge as multi-node payloads are 

used only on some HPCs
➢ CPU-only Head on an on-demand instance + 

GPU Workers on spot instances
– Workers can come and go thanks to 

resilience in Horovod

yaml file

Create a yaml file with 
Head pod(s) +

nGPU/nGPUPerNode 
Worker pods

EKS cluster
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Active Learning
➢ To define the subsequent processing task based on the 

decision making in the learning task which analyzes the 
results of the previous processing task

– Task chain + decision making between
– A simple DAG usecase

➢ Two types of task templates to generate concrete 
tasks, and condition branches to control the workflow

➢ Being integrated in the system

Processing Task Learning Task Processing Task

Point to calculate
Point with good results
Point with bad results
Truth

Calculations in
a narrower band
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Calculations in
a broader band



Event

RootStats-based Limit Calculation with MC Toys 
➢ 10000 MC toys would take approximately 55 hours to run, 

according to Xola's slides → Offloading random number 
generation to GPU

➢ Materials in Christian’s repo:  https://gitlab.cern.ch/chweber/StandardHypoTestInv

➢ Mapping to the system as a chain from toy limit calculations to 
post-processing without iteration

– iDDS has a pool of pointers to MC toys
– Each job takes a pointer to calculate the relevant toy limits and 

takes another pointer if the walltime is still available
– iDDS triggers the post-processing that combines toy limits to the 

final results
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Upload

https://indico.cern.ch/event/990866/contributions/4169312/attachments/2196366/3713597/Limit_setting_code_presso1.pdf
https://gitlab.cern.ch/chweber/StandardHypoTestInv


Visualization Support for HPO 
➢ A visualisation tool MLflow is turned on in Evaluation 

Container
– Useful for offline visualisation and analysis

➢ An 𝜶-version of the tool also integrated into PanDA 
Monitoring system

– Fetch output from training jobs and centrally spin-up an 
MLFlow container to display results

– Extendable to other visualisation tools (Neptune, WandB, 
Tensorboard, etc.) 
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User Interface in Jupyter Lab 
➢ Jupyter Notebook has become a popular user interface for 

research science, data science, data analytics, and ML
➢ Access to PanDA/iDDS from Jupyter

– Seamless integration with user’s analysis environment
– Remote resources through PanDA/iDDS

➢ Easy to provide sophisticated look-and-feel especially for 
advanced workflows

– E.g., a visual interface to define and control task networks 
for DAG workflows

➢ Thousands of extensions/tools in Jupyter ecosystem 
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Running Dask through PanDA/iDDS
➢ Dask is a Python library for parallel computing

– Very easy to parallelize your analysis written with other Python 
projects such as NumPy, pandas, scikit-learn, etc

– Built-in capability for seamless scale-up with clusters
➢ To offer further scale-up with workload partitioning and 

distributed remote clusters
– Depending on characteristics and requirements of each workload
– E.g. distributed training with Dask instead of Horovod

➢ Another type of multi-node payloads from the system point of 
view

– Trying to reuse the mechanism that has been originally developed 
for Horovod payloads

➢ GCP as a part of Google R&D Y2, EKS, other k8s-based resources
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>> def submit():
        For i in range(n_iterations):
            with concurrent.futures.Executor as e:
                points = space.get_points()
                for p in points.
                      e.submit(Client.submit, itr)
            space.optimize()
>> submit()
   * pseudo-code for applicable
        workload

>> c = Client(‘localhost’)
>> c.submit()

>> c = Client(‘remotehost’)
>> c.submit()

Cluster

Containerize

Distributed 
on-demand 

clusters

Task submission

Jobs

Scale-up with
a cluster

Scale-up with workload partitioning 
and distributed remote clusters



➢ PanDA/iDDS-based HPO service is up and running
– Experiment agnostic implementation
– Support of both usual and segmented HPO workflows
– Available for ATLAS users on ATLAS instances and 

for other experiment users on DOMA instances
➢ Many ongoing development activities to add 

ML-related functions to the service
– HPO service → ML service

➢ Usecase-driven project
– Inputs/feedbacks from (BNL) physics communities 

are highly appreciated
• E.g., came up with the idea of RootStats-based limit 

calculation in a meeting with Christian
– Happy to support more usecases

HPO Documentation:
    https://panda-wms.readthedocs.io/en/latest/client/phpo.html
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Conclusions

https://panda-wms.readthedocs.io/en/latest/client/phpo.html

