

Jefferson Lab High-B Facility

Yordanka Ilieva University of South Carolina for the DIRC Collaboration

EIC PID Consortium Meeting, 20 April 2015

High-B Sensor-Testing Facility

Motivation: DIRC configuration with readout inside a solenoid magnet. PMTs operate inside a 3-T field.

Purpose: Gain evaluation of small photon sensors in magnetic fields. Goal: Determine design characteristics, suitable for DIRC readout.

High-B Sensor-Testing Facility

Jefferson Lab Support

- Laboratory Space, Equipment
- Personnel
 - Data Acquisition Installation and Maintenance
 - Supperconducting Magnet Cooling, Refilling, and Maintenance
 - Detector Lab support: engineering

University Contributions

• Personnel

- University of South Carolina: faculty, graduate and undergraduate students
- Old Dominion University: postdoctoral fellow(s), graduate student

High-B Sensor-Testing Facility

- Commissioning: July/August 2014
- Data taking: November 2014
- People: JLab: P. Nadel-Turonski, C. Zorn; USC: Y.
 Ilieva, <u>T. Cao</u>, E. Bringley; ODU: K. Park, <u>G. Kalicy</u>,
 L. Allison; UVA: V. Sulkosky

Major Components

Magnet:

- superconducting solenoid
- max. field: 5.1 T at 82.8 A
- 12.7–cm (5–inch) diameter warm bore
- length of bore: 76.2 cm (30 inch)
- central field inhomogeneity: ≤5×10⁻⁵ over a cylindrical volume of a diameter of 1.5 cm and length of 5 cm

Test Box:

- non-magnetic, light-tight
- cylindrical shape: d_{in} \sim 4.5 inch, L \sim 18 inch
- allows for rotation of sensors
- LED light source

Sensor Orientation Capabilities

Holder: balance of magnetic torque

φ: rotation about Z'
θ: rotation about Y(Y')

Turntable: rotation about Y(Y') axis

Z' (along sensor's axis)

0

Z (along B-field)

Major Components

fADC Calibration

Commissioning and First Run

- ADC: 19.1±0.2 fC/ADCch
- Data collected
 - Photek PMT210: B = (0, 5)
 T; θ = (0°, 30°, 180°);
 φ=0°, 90°, 135°
 - Photek PMT240: B = (0, 2)
 T; θ = 0°; φ=0°
 - Photonis PP0365G: B = (0, 3) T; θ = (0°, 30°, 180°);
 φ=0°, 90°, 135°

pore size: 3 μm, 10 μm gain: ~10⁶ QE: 15%

pore size: 6 µm gain: ~10⁵ QE: 18%

MCP-PMT Data Analysis

Methods:

- A. At each setting, evaluate the total charge collected on the anode. Map total collected charge as a function of setting.
 - a. sensitive to fluctuations in the light input
 - b. must renormalize data at different θ to a reference setting (0 T, 0°)
 - c. somewhat sensitive to pick-up noise
 - d. quantity simple to evaluate, no fits involved
- B. At each setting, determine the absolute gain of the PMT. Map the absolute/relative gain as a function of setting.
 - a. independent on light-input fluctuations
 - b. no need for renormalization
 - c. sensitive to fit function, initial values of fit parameters
 - d. sensitive to interval of integration of signal

Method A

Results: Method A

– Photek PMT210

- max. high voltage: –4.8 kV
- 5% uncertainty shown:
 dominated by variations in reproducibility of the same data point.
- nearly 20% increase of charge output at 0.5 T relative to 0 T
- about a factor of 6
 decrease of signal
 between 0 T and 4 T
 (-4.44 kV)
- operating the sensor at nearly maximum high voltage extends the range of applied field to 5 T

Results: Method A

Results: Method A

Method B

θ=0°, B=0.5 T

Results: Method B

Method B: Fitting Function

Method B: Example Fits, I9

θ=0°, B=0. T

θ=0°, B=0.5 T

Method B: Example Fits, I9

 $\theta = 0^{\circ}$, B=4. T, HV=-4.44 kV

$\theta = 0^{\circ}$, B=4 T, HV=-4.76 kV

Method B: Gain Evaluation

Summary

- Sensor Testing Facility Established: gain evaluation up to 5 T
- Rotational capabilities for small sensors
- Single-Anode sensors (Photek PMT 240 and 210, Photonis PP0365G) evaluated in 2014
 - Photek PMT210: excellent performance up to 5 T at $\theta=0^{\circ}$.
 - Photek PMT240: indication for magnetization effects
 - Photonis PP0365G: excellent performance up to 3 T
 - First Measurements indicate that smaller-pore size sensors have better immunity to magnetic fields.

Current Status

- Strong Interest from Manufacturers
 - Follow-up measurements of PMT210: independent control of cathode-plate, across plates, and last-plate-anode HVs.
 - Planacon sensors (25 μ m and 10 μ m) on loan from Photonis.
- Downtime until July 2015
 - upgrade of dark-box endcaps (HV independent control)
 - implementation of a reference PMT (pulser monitor)
 - implementation of QDC (alternative means for charge integration)
 - replacement of HV units

The END

Method B: I₉ and I₁₉ θ=0°, B=0.5 T stups 10⁴ **I**9 I_{19} 10^{3} 10^{2} 10 1 3000 4000 5000 6000 7000 ADC 1000 2000

Method B: Example Fits, I₁₉

