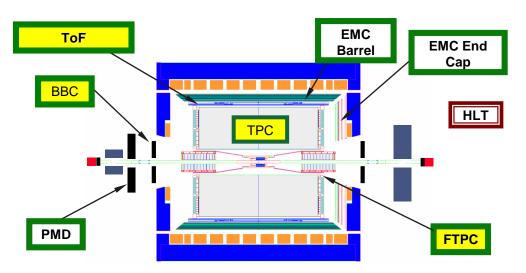
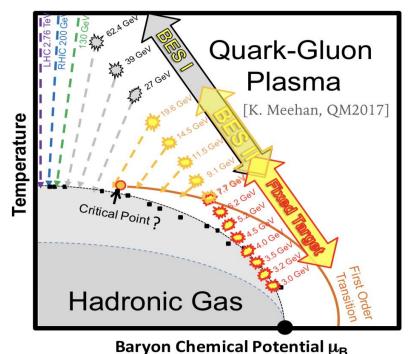


Recent strangeness results from the RHIC beam energy scan

Xianglei Zhu
Tsinghua University
5/11/2021


BNL nuclear physics seminar


QCD phase diagram

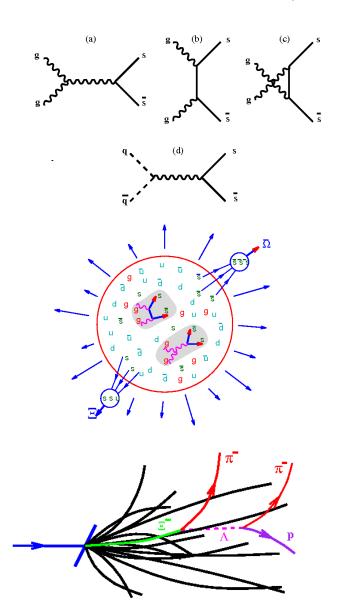
RHIC Beam Energy Scan
 Cover the intermediate baryon density region
 Look for onset of de-confinement, phase boundary and critical point

STAR BES

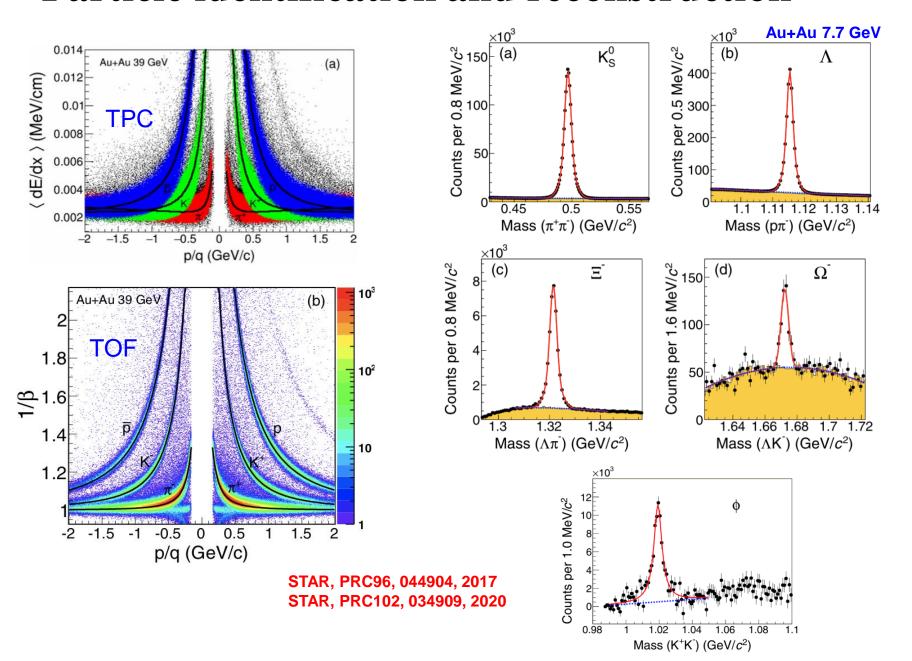
- STAR: Collider experiment at RHIC
- full azimuthal coverage at mid-rapidity
- BES-I (completed) $Au+Au \sqrt{s_{NN}} = 62.4 - 7.7$ GeV
- BES-II (on-going) $Au+Au \sqrt{s_{NN}} = 19.6 - 7.7$ GeV
- Fixed-target (on-going) $Au+Au \sqrt{s_{NN}} = 7.7 3.0$ GeV $\mu_B \text{ up to 721 MeV}$

STAR BES-I datasets

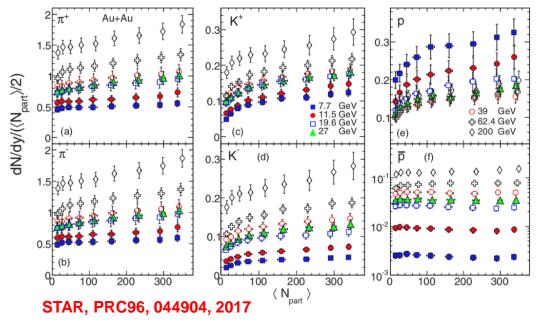
- STAR:
 Collider experiment at
 RHIC
- full azimuthal coverage at mid-rapidity
- BES-I (completed) $Au+Au \sqrt{s_{NN}} = 62.4 - 7.7$ GeV


Year	Collisions	$\sqrt{s_{NN}}$ (GeV)	MB events
2010	Au+Au	7.7	~ 4 M
2010	Au+Au	11.5	~ 12 M
2014	Au+Au	14.5	~ 13 M
2011	Au+Au	19.6	~ 36 M
2011 / 2018	Au+Au	27	~ 70 M / ~ 560 M
2010	Au+Au	39	~ 130 M
2017	Au+Au	54.4	~ 556 M
2010	Au+Au	62.4	~ 46 M

Why strangeness?


- Strange quarks
 - Not exist in colliding nuclei
 - Current mass $\sim 100 \text{ MeV} < T_c$
 - Easily pair-produced in de-confined QGP medium

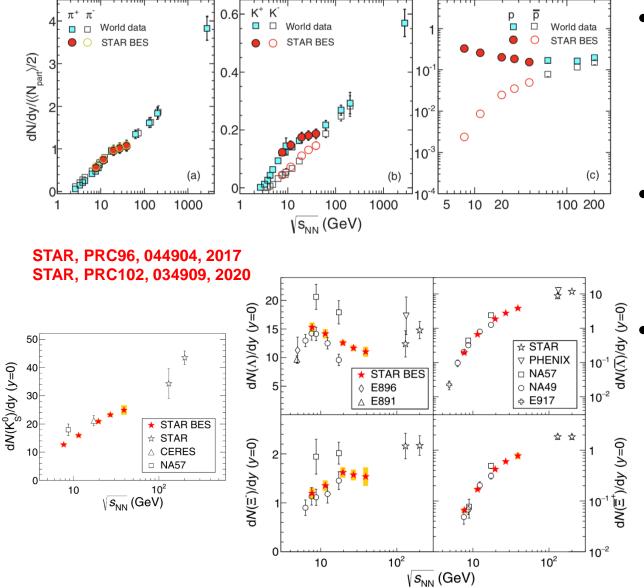
→ Strangeness enhancement!


- Hadrons with (multiple) strange quarks
 - Small hadronic cross section
 - Sensitive to the early stage dynamics of the medium
 - Can be easily reconstructed and identified in experiment, up to high p_T!

Particle identification and reconstruction

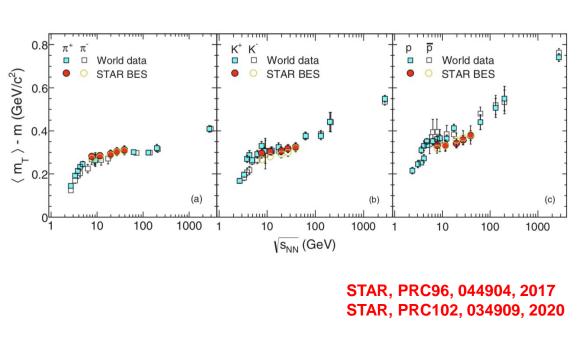
Particle yields, dN/dy, at mid-y

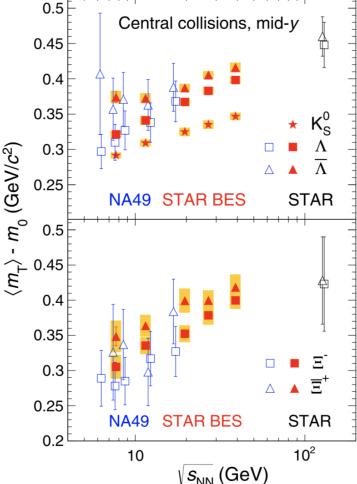
 $\sqrt{s_{NN}} = 7.7 \text{ GeV}$ $\sqrt{s_{NN}} = 11.5 \, \text{GeV}$ 10 10^{-2} $\sqrt{s_{\rm NN}} = 27 \,\mathrm{GeV}$ $\sqrt{s_{_{\rm NN}}} = 19.6 \; {\rm GeV}$ $dN/dy/(\langle N_{part} \rangle/2)$ 10 STAR, Au+Au, |y|<0.510 10 300 400 200


- Yield per participating pair increases towards central and higher energies in general
- Exceptions:

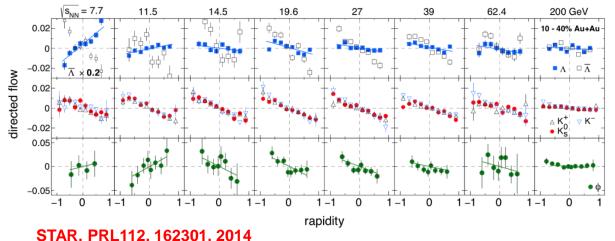
1

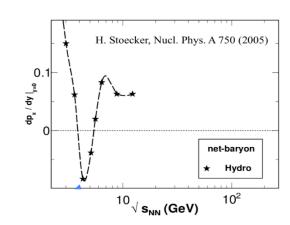
STAR, PRC102, 034909, 2020

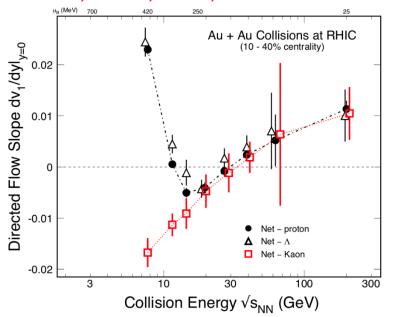

- p and Λ yields decrease towards higher energy
- \bar{p} and $\bar{\Lambda}$ has weak centrality dependence


Particle yields in central collisions

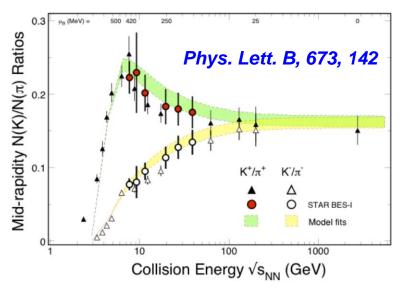
- STAR BES-I data consistent with published data in general
- Rich structure in these excitation functions
- p and Λ yields
 reach minimum at
 39 GeV:
 interplay of baryon
 transport and pair
 production

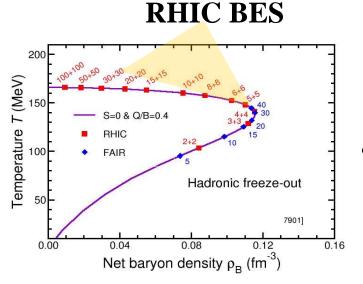

Average transverse mass

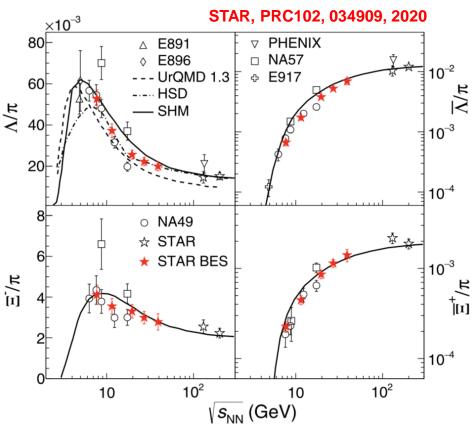



- A step-like structure can be seen in the energy dependence
- Λ and $\overline{\Lambda}$ show split at lower energies might be due to baryon antibaryon annihilations at high baryon density

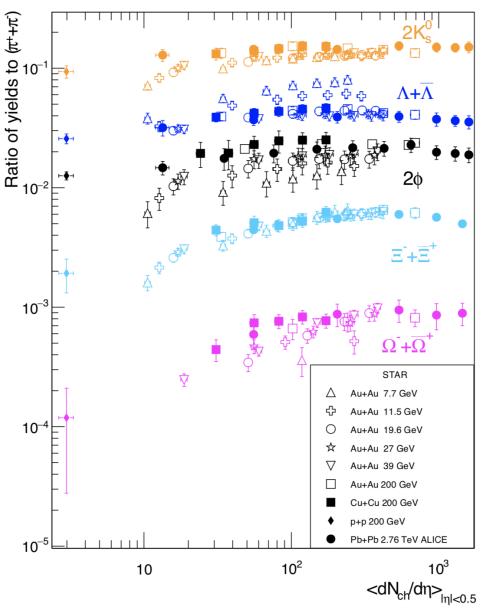
Directed flow




STAR, PRL112, 162301, 2014 STAR, PRL120, 062301, 2018


- Sign change of proton dv_1/dy , softening of EOS, first-order phase transition
- Pouble sign change seen in netproton, net- Λ , not seen in net-kaon
- Need theory to explain

Strange hadron to pion ratio



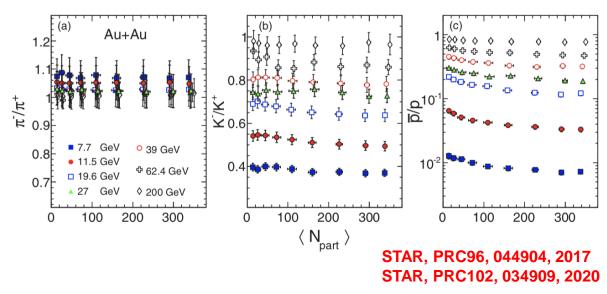
J. Randrup et al., PRC 74, 047901 (2006)

Particle ratios consistent with NA49, consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out

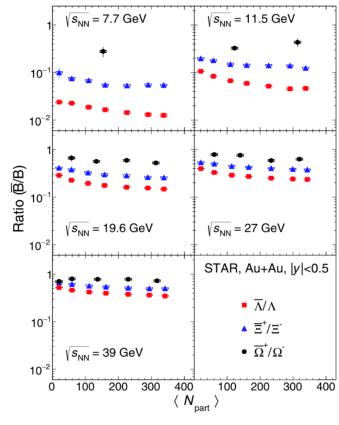
Strange hadron to pion ratio vs $dN_{ch}/d\eta$

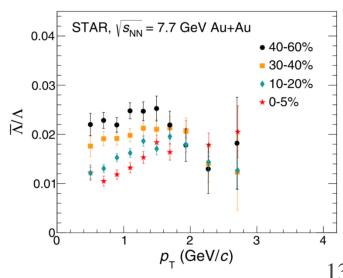
Yan Huang, APS April Meeting 2021, SQM2021

STAR, PRC96, 044904, 2017 STAR, PRC102, 034909, 2020 ALICE, PRC88, 044910, 2013

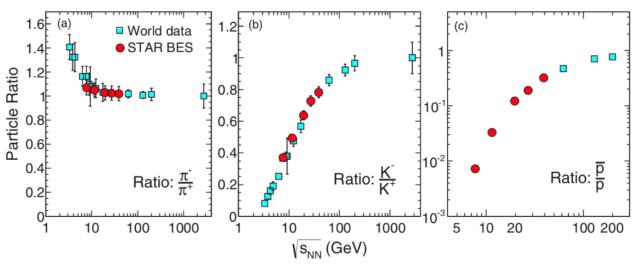

$$\frac{dn}{dy} = \frac{\sqrt{M(1+\sinh^2 y)}}{\sqrt{1+M\sinh^2 y}} \frac{dn}{d\eta},$$
where $M = 1 + m^2/p_t^2$

$$dN_{ch}/d\eta = \sum dN_{ch}/d\eta \ (k^{\pm}, \pi^{\pm}, p, \bar{p})$$

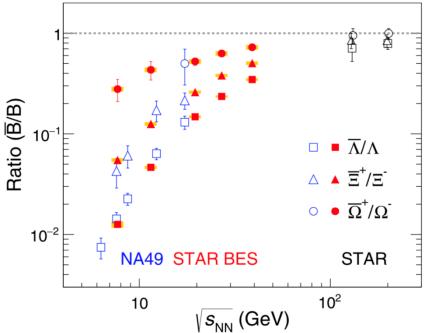

$$dN_{ch}/d\eta (\eta = 0) \sim dN_{ch}/d\eta (|\eta| < 0.5)$$


- $aiv_{ch}/aij(ij-0)$ $aiv_{ch}/aij(iji) < 0.5$
- The ratios at different energies/centralities/systems mainly depend on charged hadrons multiplicity, except for Λ and ϕ
- The ratios saturate at large charged hadrons multiplicity

Anti-hadron to hadron ratio



- Centrality dependence of \overline{B}/B ratios: peripheral > central
- This effect is more prominent at lower energies.
 - baryon stopping and/or anti-baryon absorption
- Loss of low p_T $\overline{\Lambda}$ in central collisions



Anti-hadron to hadron ratio

STAR, PRC96, 044904, 2017 STAR, PRC102, 034909, 2020

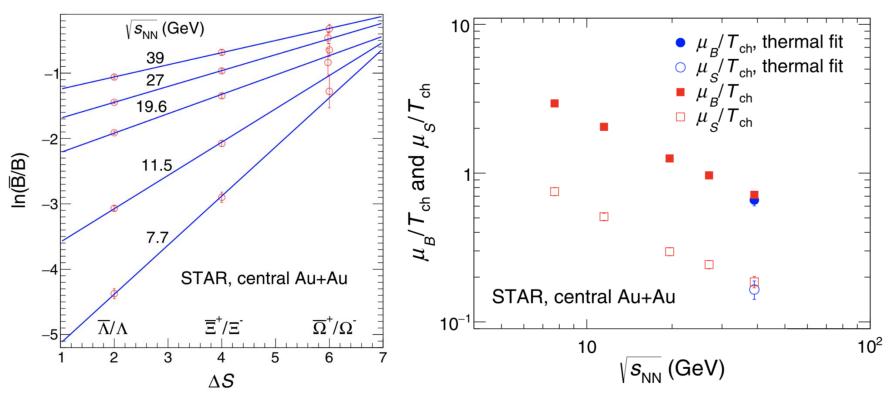
- STAR BES data lie in a trend with NA49 data
- **B**/**B** ratios increase with number of strange quarks at low energies

$$\overline{\Omega}^+/\Omega^- > \overline{\Xi}^+/\Xi^- > \overline{\Lambda}/\Lambda > \overline{p}/p$$

Anti-hyperon to hyperon ratio

$$n_{i} = \frac{g_{i}}{(2\pi^{2})} \gamma_{S}^{|S_{i}|} m_{i}^{2} T K_{2}(m_{i}/T) \exp(\mu_{i}/T)$$

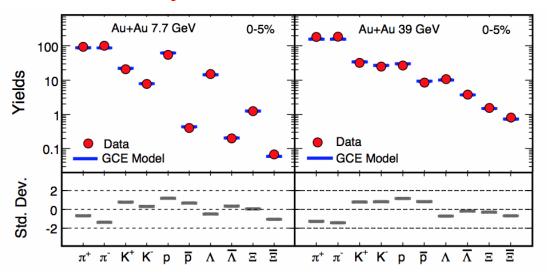
$$\frac{\overline{\Lambda}}{\Lambda} = \exp(-\frac{2\mu_{B}}{T} + \frac{2\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Lambda}}{\Lambda}) = -\frac{2\mu_{B}}{T} + \frac{2\mu_{S}}{T}$$

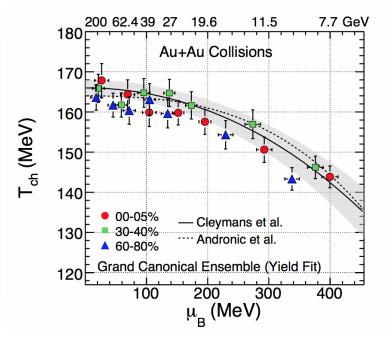

$$\frac{\overline{\Xi}^{+}}{\Xi^{-}} = \exp(-\frac{2\mu_{B}}{T} + \frac{4\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Xi}^{+}}{\Xi^{-}}) = -\frac{2\mu_{B}}{T} + \frac{4\mu_{S}}{T}$$

$$\frac{\overline{\Omega}^{+}}{\Omega^{-}} = \exp(-\frac{2\mu_{B}}{T} + \frac{6\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Omega}^{+}}{\Omega^{-}}) = -\frac{2\mu_{B}}{T} + \frac{6\mu_{S}}{T}$$

- T is the temperature.
- \triangleright μ_B is the baryon chemical potential.
- μ_S is the strangeness chemical potential. (arXiv:nucl-th/9704046v1 by J.Cleymans & Phys. Rev. C 71(2005)054901)

$\mu_S/T_{\rm ch}$ and $\mu_B/T_{\rm ch}$

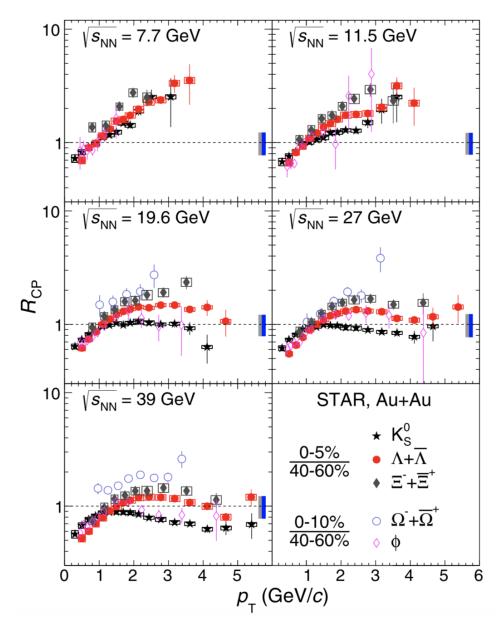




- Anti-hyperon to hyperon ratios are fit well with statistical thermal model
- Chemical freeze-out parameters, $\mu_S/T_{\rm ch}$ and $\mu_B/T_{\rm ch}$, are extracted

Chemical freeze-out parameters: $T_{\rm ch}$ vs. μ_B

STAR, Phys. Rev. C 96, 044904, 2017

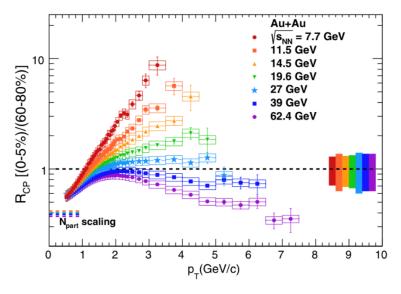

- ✓ Particles used : π , K, p, Λ , Ξ
- ✓ Ensemble used:
 - **Grand canonical (GCE)**
- ✓ Fit parameters:

 T_{ch} , μ_{B} , μ_{s} and γ_{s}

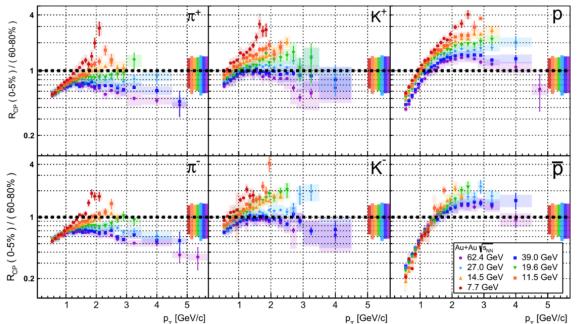
Andronic: NPA 834 (2010) 237 Cleymans: PRC 73 (2006) 034905 Au+Au 200 GeV: Phys. Rev. C **83** (2011) 24901

Thermus, S. Wheaton & J. Cleymans, Comput. Phys. Commun. 180: 84-106, 2009.

Nuclear modification factors R_{CP}

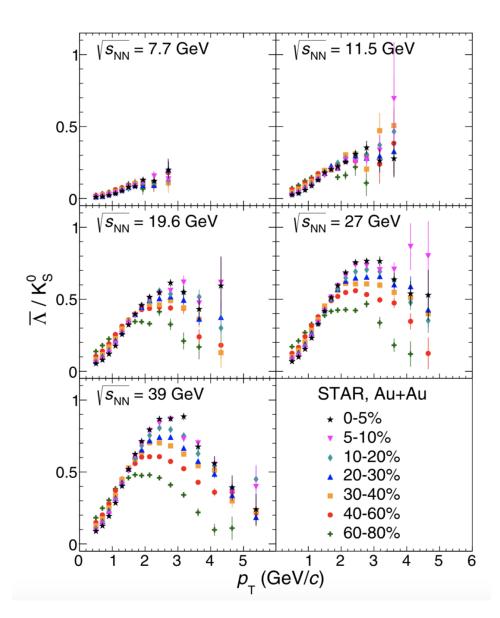


$$R_{\rm CP}(p_T) = \frac{[d^2\sigma/(N_{\rm bin}p_Tdp_Tdy)]_{\rm central}}{[d^2\sigma/(N_{\rm bin}p_Tdp_Tdy)]_{\rm peripheral}}$$


- No K_S⁰ suppression in Au+Au 7.7 and 11.5 GeV
- Cronin effect and other effects (radial flow) compete with partonic energy loss
- Intermediate p_T, particle R_{CP} difference becomes smaller @ 7.7 and 11.5 GeV

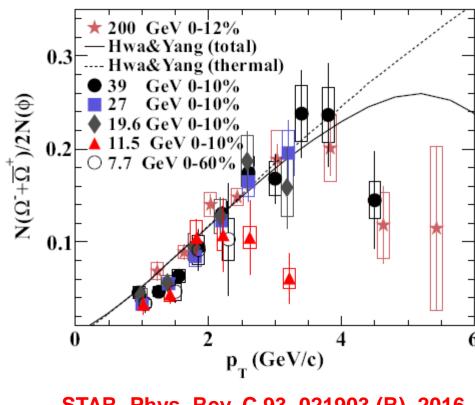
STAR, PRC102, 034909, 2020

Nuclear modification factors R_{CP}



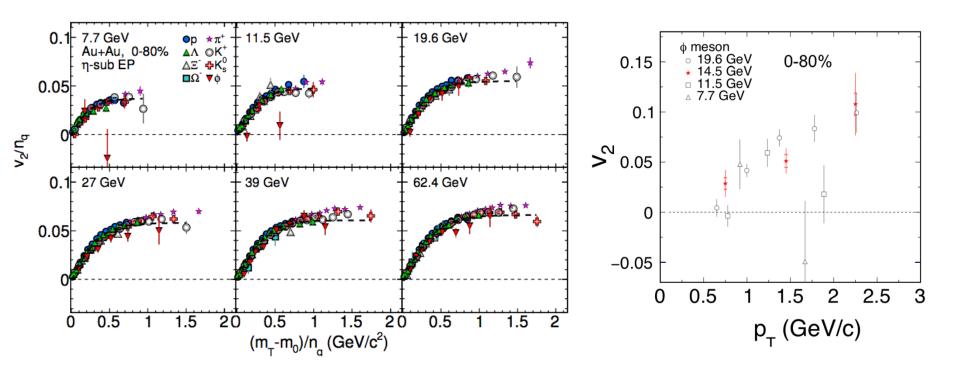
- No suppression for lower energies
- Cronin effect and other effects (radial flow) compete with partonic energy loss

STAR, PRL121, 032301, 2018


Baryon to meson ratio: $\overline{\Lambda}/K_S^0$

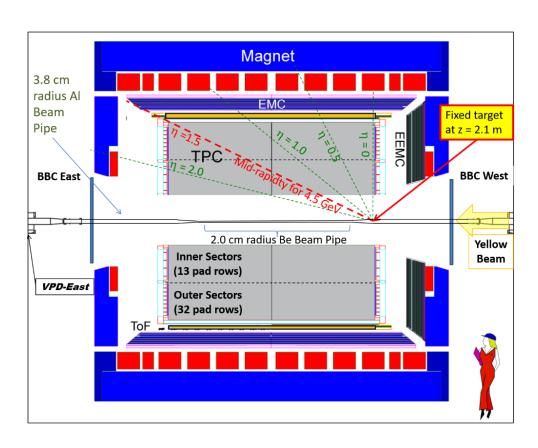
STAR, PRC102, 034909, 2020

 $\sqrt{s_{NN}}$ < 19.6 GeV, at intermediate p_T, the separation of central (0-5%) and peripheral (40-60%) collisions in $\overline{\Lambda}$ / K⁰_S becomes less significant


Ω / ϕ ratio

(a) Au+Au 11.5 GeV (b) Au+Au 19.6 GeV 0-10% 0-10% 10%-20% 10%-60% 20%-40% 40%-60% 0.2 $N(\Omega^{+}\overline{\Omega})$ (d) Au+Au 39 GeV 0-10% 0-10% 10%-20% **10%-20%** 20%-40% 20%-40% 40%-60% * 40%-60% □ 60%-809 0.1 Transverse momentum p_{T} (GeV/c)

- STAR, Phys. Rev. C 93, 021903 (R), 2016
- Intermediate $p_T \Omega/\phi$ ratios: Indication of separation between ≥ 19.6 and 11.5 GeV
- \triangleright Ω/ϕ ratios: 40%-60% peripheral < 0-10% central for 19.6, 27 and 39 GeV

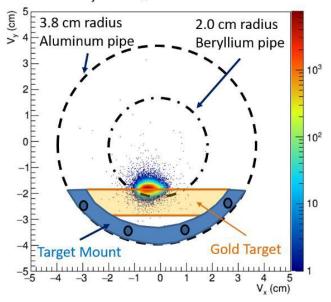

Elliptic flow

STAR, Phys. Rev. C88 (2013) 014902; Phys. Rev. C93 (2016) 014907

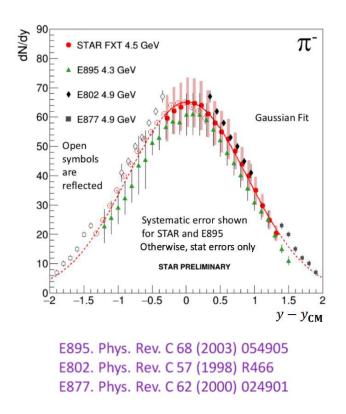
- ➤ NCQ scaling holds with 10% for selected particles in all energies
- \triangleright 14.5 GeV: Sizable ϕ meson v_2 , comparable to 19.6 GeV
- ➤ High statistics and more collision energies below 20 GeV needed!

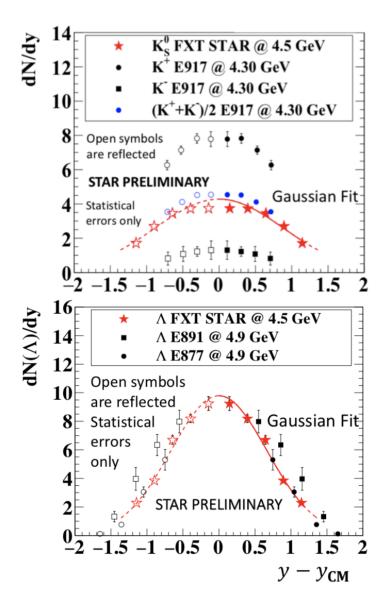
The STAR fixed-target program

1.3M events from half hour test run, top 30% central trigger, $Au+Au \sqrt{s_{NN}}=4.5 \text{ GeV}$


3.4M events from two hour test run, top 30% central trigger, Al+Au $\sqrt{s_{NN}}$ =4.9 GeV

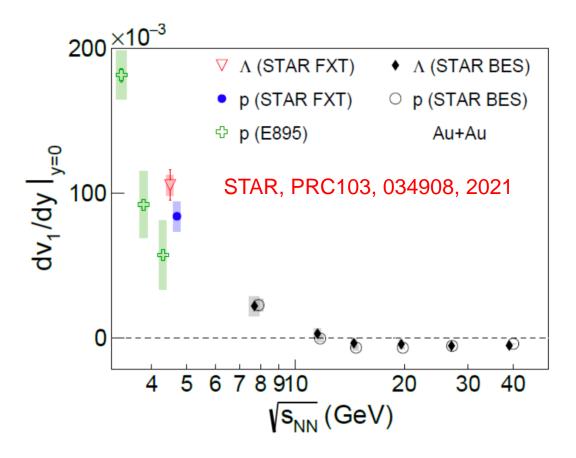
1 mm thick (4% inter. prob.) gold target (2015)


→ 1/4 mm thick gold target in FXT phys. program


V_v vs. V_x Distribution

Hadron spectra and dN/dy in Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

- Amplitude and width of rapidity densities are consistent with AGS experiments
- m_T m₀ and y range can be extended by eTOF and iTPC upgrades

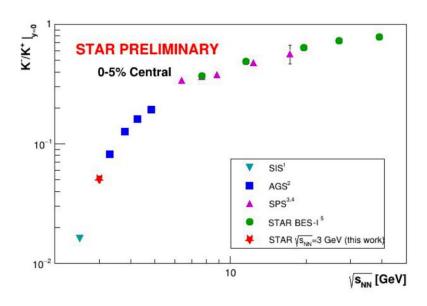


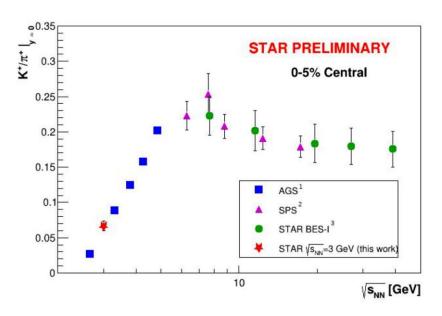
Y. Wu, QM2018 Top 5%

M.-U. Ashraf, QM2019

Directed flow in Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

E895. Phys. Rev. Lett. 84 (2000) 005488 STAR . Phys. Rev. Lett. 112 (2014) 162301

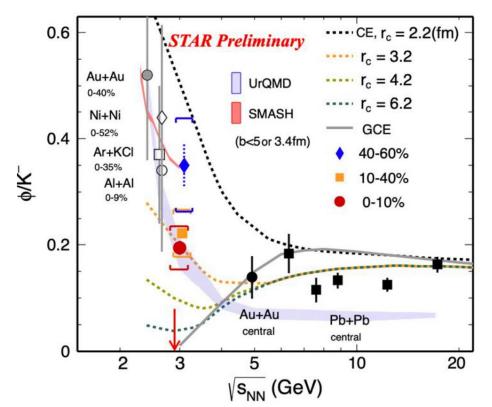

Baryon v_1 slope is consistent with E895 at 4.3GeV


The STAR fixed-target physics program (2018-2021)

Year	Collisions	$\sqrt{s_{NN}}$ (GeV)	Good events
2018	Au+Au	3.0	~ 258 M
2018	Au+Au	7.2	~ 155 M
2019	Au+Au	3.9	~ 53 M
2019	Au+Au	3.2	~ 200 M
2019 / 2020	Au+Au	7.7	~ 164 M
2020	Au+Au	4.5	~ 108 M
2020	Au+Au	6.2	~ 118 M
2020	Au+Au	5.2	~ 103 M
2020	Au+Au	3.9	~ 117 M
2020	Au+Au	3.5	~ 116 M
2021	Au+Au	3.0, 9.2, 11.5,13.7	On-going

D. Cebra, APS April Meeting, 2021

Charged kaon production in Au+Au $\sqrt{s_{NN}}$ =3.0 GeV

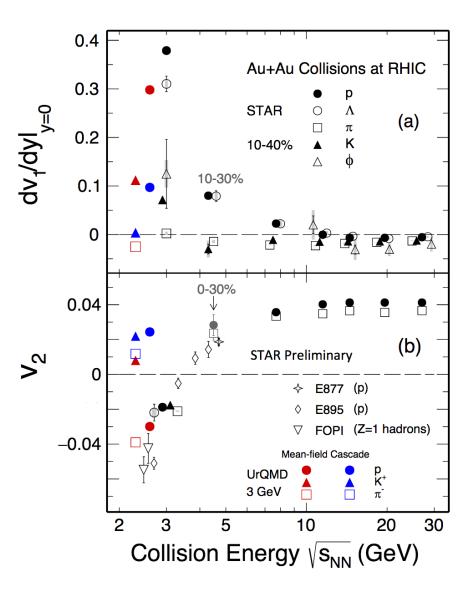


B. Kimelman, CPOD2021

SIS: J. Phys. G 28, 2011 AGS: Phys. Lett. B 490, 53; Phys. Lett. B 476, 1 SPS: Phys. Rev. C 77, 024903; Phys. Rev. C 66, 054902; Phys. Rev. C 77, 024903 STAR: Phys. Rev. C 96, 044904

- $ightharpoonup K^+/\pi^+$ and K^-/K^+ ratios follow world trend
- ➤ K⁻/K⁺ ratio drops at lower energies from associated production of K⁺ (NN→ NΛK)

ϕ production in Au+Au $\sqrt{s_{NN}}$ =3.0 GeV


World data: Phys. Lett. B 778, 403-407, Phys. Rev. C. 80.025209; Phys. Rev. C. 69.054901; Phys. Rev. C 78, 044907; Phys. Rev. C 77, 024903, Phys. Rev. C 66, 054902

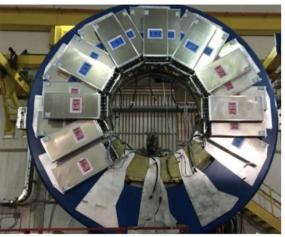
Models: Nucl. Phys. A 772, 167; Phys. Lett. B 603, 146 J. Phys. G: Nucl. Part. Phys. 43 (2016) 015104 Phys. Rev, C 99, 064908

G. Xie, S. Radhakrishnan, APS April Meeting, 2021

- ➤ Low energies, small systems: local strangeness conservation
- ➤ Canonical instead of Grand Canonical Ensemble describe statistical production → reduced phase space → "Canonical suppression"
- \triangleright Data favors a CE calculation with a correlation length $r_c = 3.2$ fm in 0-10%
- \triangleright Data strongly disfavors GCE, results ~5 σ away from zero (for 0-10%)

v_1 and v_2 in Au+Au $\sqrt{s_{NN}}$ =3.0 GeV

S. Radhakrishnan, APS April Meeting, 2021


- \triangleright Negative v_1 slope and large positive v_2 at high energy collisions
- ➤ Positive v₁ slope and negative v₂ for all measured particles in 3 GeV collisions
- Positive v_1 slope observed for kaons and ϕ mesons for the first time
- ➤ Results from UrQMD with baryonic mean-field interactions qualitatively describe the data

E877: Phys. Rev. C 56, 3254-3264

E895: Phys. Rev. Lett.85, 940 FOPI: Phys. Lett. B612, 173

STAR detector upgrades for BES-II

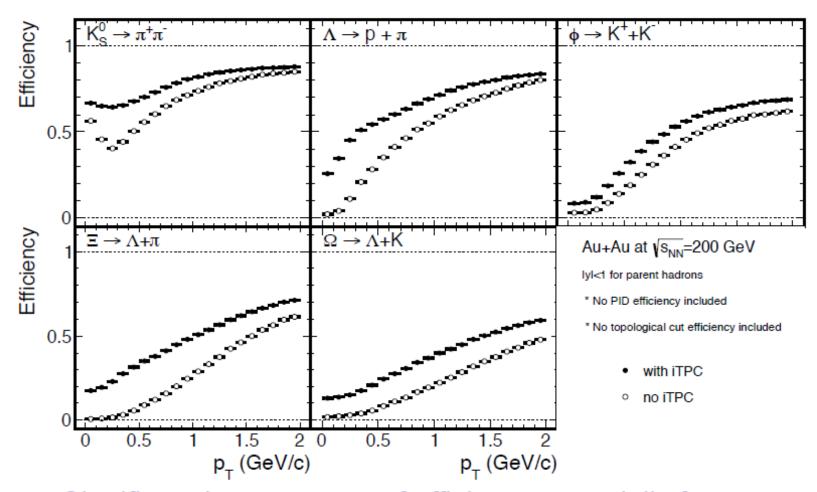
iTPC:

- •Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF:

- Forward rapidity coverage is critical
- PID at $\eta = 0.9$ to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR
- Ready in 2019

EPD:


- Improves trigger
- Reduces background
- Allows a better centrality and reaction plane measurement Ready in 2018

- iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619
- eTOF: STAR and CBM eTOF group, arXiv: 1609.05102
- EPD: J. Adams, et al. Nucl. Instr. Meth. A 968, 163970 (2020)

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- B) Enhance centrality/EP resolution

All 3 detectors fully installed before Run-19.

iTPC improves strangeness reconstruction in BES II

• Significant improvement of efficiency especially for Ξ , Ω

H. Masui, A. Schmah / LBNL

STAR BES-II data samples

Year	Collisions	$\sqrt{s_{NN}}$ (GeV)	Good events
2019	Au+Au	19.6	~ 582 M
2019	Au+Au	14.5	~ 324 M
2020	Au+Au	11.5	~ 235 M
2020	Au+Au	9.2	~ 162 M
2021	Au+Au	7.7	~ 100 M (goal)
2021	Au+Au	17.1	~ 250 M (goal)

Data taking goes smoothly and reached the goal of statistics.

Summary & outlook

- ➤ STAR BES-I have measured systematically the production of strangeness at intermediate baryon density.
- ➤ Many structures are visible in strangeness related observables in this energy range.
- ➤ In particular, QGP signatures appear to turn off at lower collision energies (<20GeV), but need more statistics to confirm
- The almost completed STAR BES-II with detector upgrade (iTPC, eTOF, EPD) and larger data samples allow precise measurement of the matter properties at intermediate to high baryon density (μ_B up to 721 MeV)