

Company Introduction

Julian Becker CEO

Chieh-Hsuan Tsai
JUNIOR SALES MANAGER

Julian Schmehr VP PRODUCTION

Cyrill von Hehn
JUNIOR SALES MANAGER

Spin-off from DESY

Photon counting detectors

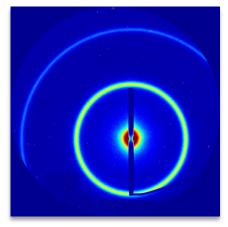
Full-service detector company

Founded 2014

Medipix3-RX based

Custom systems

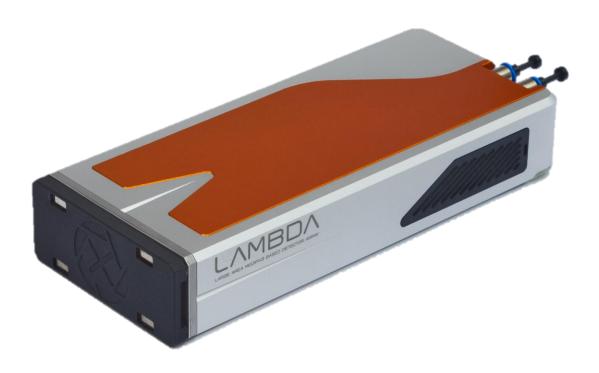
3 standard product lines


Our detectors are used for:

Cathode Ray Tube

Filter
Collimator

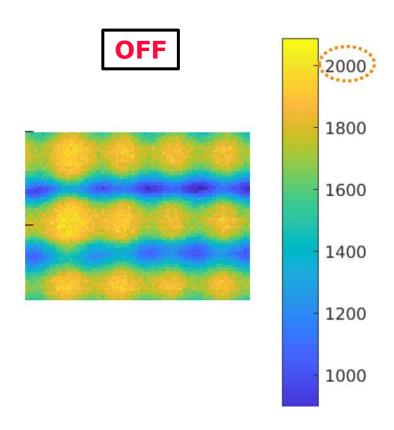
Detector
Collimator


SAXS/WAXS

BUT NO MX (YET!)....

Sources: XRD | XPCS | SAXS/WAXS

Some highlights of our current detectors

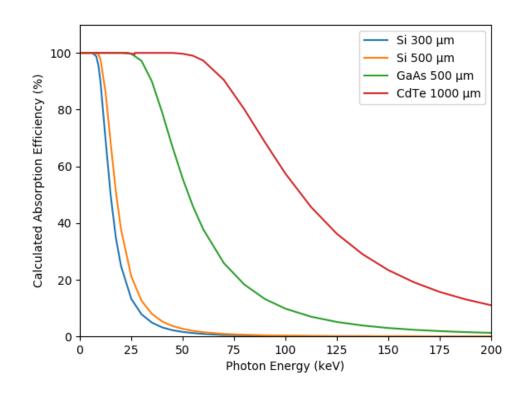


High speed

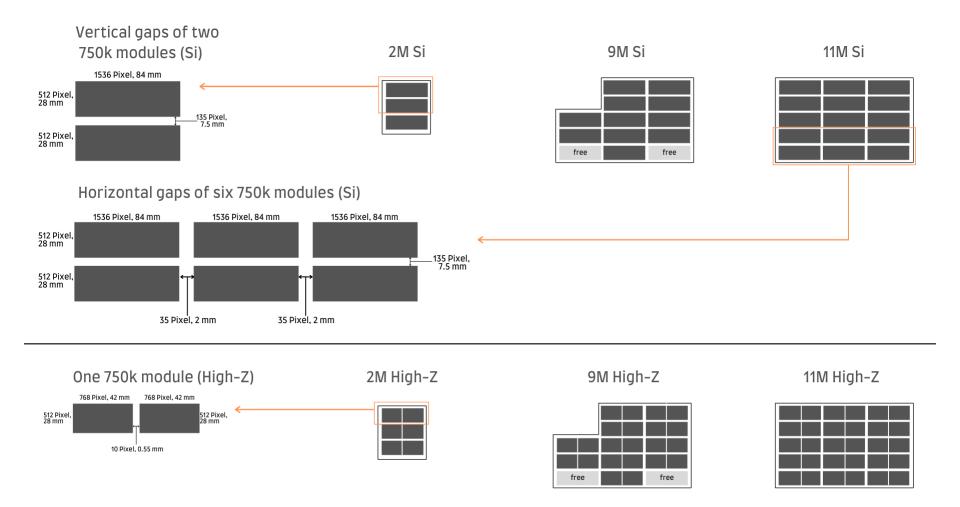
Bit Depth	Max frame rate	Gap between frames
24-bit	1 kHz	1 ms
12-bit	2 kHz	0 ms
6-bit	4 kHz	0 ms
1-bit	> 23 kHz	0 ms

Charge summing mode

- Charge sharing correction in Medipix3-RX ASIC
- Pencil beam scan shows hits consistently once and only once



High-Z sensors


Sensor choice depends on application

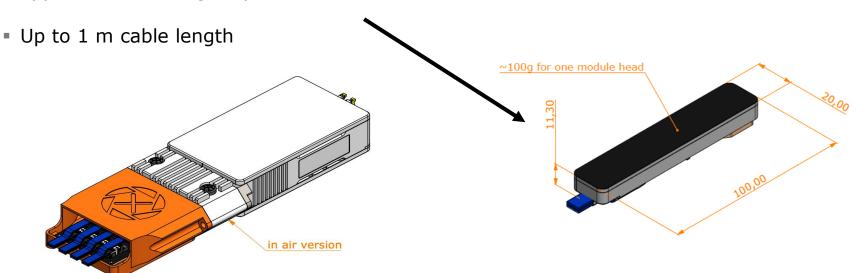
- Si up to ~15 keV
- GaAs up to ~40 keV
- **CdTe** even higher Energies

Any system is available with any sensor!

Sensor layouts of our large systems

Hydra 60k, 250k

Examples: NRS, RIXS

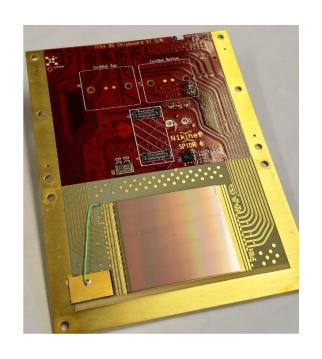

Up to four individual 60k modules

connected via cables for maximum flexibility

Can be used in-vacuum

Full capabilities of standard detectors

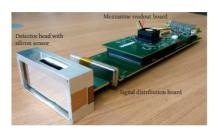
 Small detector head – ideally suited for applications with tight space constraints


in vacuum version

SPARTA Specifications - Soon

Pixel size	200 μm x 200μm
Sensor material	500 µm thick Silicon, high-Z version in development
Sensor size	128 x 512 pixels 25.6 mm x 105.2 mm sensitive area
Maximum frame rate	up to 6.5 MHz in a burst of 352 images
Average frame rate	≥ 3.5 kHz, exact value tba.
Dynamic range	0 to 10 ⁴ photons at 12 keV per frame
Equivalent count rate	$>10^{10}$ cts/pix/s (>2.5 \times 10 ¹¹ cts/mm ² /s)
Noise	$\sim 1 \text{ keV } (0.75 \text{ keV at reduced} $ dynamic range)
External trigger	tba., likely 3.3 V TTL

TimePix4 Specifications – Next Generation



Pixel size	55 μm x 55 μm
Sensor material	Si and High-Z
ASIC size	448 x 512 pixels, 4 side buttable
Maximum frame rate	up to 40 kHz, CRW
Timing resolution	Better than 0.2 ns
Dynamic range	16 bit
Equivalent count rate	~ 5 Gcts/mm²/s
Noise	Photon counting
Data driven mode	TOT and TOA @ >10 kHz/pixel

Off chip developments

- On board configuration & calibration data
 - -> enables true plug & play functionality
- Scalable, self-configuring backend node(s)
 - -> reduce number of servers
- 100 Gbit readout
 - -> reduces number of optical fibers
 - -> enables high data throughput
- On board data processing/compression
 - -> machine learning for data reduction?
 - -> reduces computing requirements (time & servers)
 - -> reduces bandwidth requirement between detector and backend

One decade of the LAMBDA 750k

Your questions

