# Data Acquisition, Processing and Monitoring at the NSLS-II Life Science Beamlines - an Adaptable Approach for Long-Term Development



Jun Aishima
Data Science and Systems Integration Program

National Synchrotron Light Source II





- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?

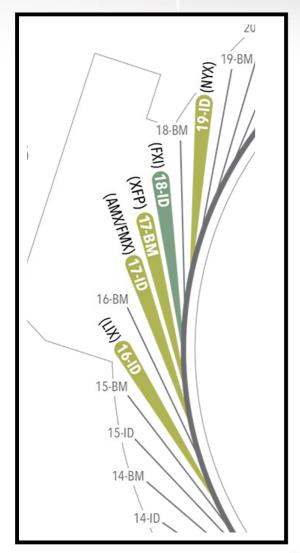




- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?

- New facility with small, intense beams
- Many beamlines already built with many more to come
- Biology beamlines
  - High degree of automation
  - Heterogenous beamline hardware and software ecosystems
  - Large user community
- LSDC






| Dida      | Port          | Nama                                                                             | Contact                                |
|-----------|---------------|----------------------------------------------------------------------------------|----------------------------------------|
| Bldg.     | Port<br>2-ID  | Name Soft Inelastic X-ray Scattering (SIX)                                       | Contact  Valentina Bisogni, Ext. 3163  |
|           | 3-ID          |                                                                                  | Yong Chu, Ext. 5582                    |
| 743       | 4-BM          | Hard X-ray Nanoprobe (HXN)                                                       | Ryan Tappero, Ext. 5245                |
| 743       |               | X-ray Fluorescence Microprobe (XFM) (XFM)                                        | Christie Nelson, Ext. 4916             |
| 743       | 4-ID          | Integrated In situ and Resonant Hard X-ray Studies (ISR)                         |                                        |
| 743       | 5-ID          | Submicron Resolution X-ray Spectroscopy (SRX)                                    | Andrew Kiss, Ext. 3569                 |
| 743       | 6-BM          | Beamline for Materials Measurement (BMM)                                         | Bruce Ravel, Ext. 3613                 |
| 743       | 7-BM          | Quick x-ray Absorption and Scattering (QAS)                                      | Steven Ehrlich, Ext. 7862              |
| 743       | 7-ID-1        | Spectroscopy Soft and Tender (SST-1)                                             | Cherno Jaye, Ext. 5958                 |
| 743       | 7-ID-2        | Spectroscopy Soft and Tender (SST-2)                                             | Conan Weiland, Ext. 8468               |
| 743       | 8-BM          | Tender Energy X-ray Absorption Spectroscopy (TES)                                | Yonghua Du, Ext. 6234                  |
| 743       | 8-ID          | Inner-Shell Spectroscopy (ISS)                                                   | Eli Stavitski, Ext. 8641               |
| 744       | 10-ID         | Inelastic X-ray Scattering (IXS)                                                 | Yong Cal, Ext. 7154                    |
| 744       | 11-BM         | Complex Materials Scattering (CMS)                                               | Masa Fukuto, Ext. 5256                 |
| 744       | 11-ID         | Coherent Hard X-ray Scattering (CHX)                                             | Andrei Fluerasu, Ext. 4645             |
| 744       | 12-ID         | Soft Matter Interfaces (SMI)                                                     | Mikhail Zhernenkov, Ext. 5158          |
| 745       | 16-ID         | Life Science X-ray Scattering (LiX)                                              | Lin Yang, Ext. 5833                    |
| 745       | 17-BM         | X-ray Footprinting of Biological Materials (XFP)                                 | Erik Farquhar, Ext. 8174               |
| 745       | 17-ID-1       | Highly Automated micro focus Macromolecular Crystallography (AMX)                | Jean Jakoncic, Ext. 3930               |
| 745       | 17-ID-2       | Frontier Microfocusing Macromolecular Crystallography (FMX)                      | Martin Fuchs, Ext. 8890                |
| 745       | 18-ID         | Full Field X-ray Imaging (FXI)                                                   | Wah-Keat Lee, Ext. 4085                |
| 745       | 19-ID         | Biological Microdiffraction Facility (NYX)                                       | Kevin Battaile, Ext. 6331              |
| 741       | 21-ID-1       | Electron Spectro-Microscopy (ESM-ARPES)                                          | Elio Vescovo, Ext. 7399                |
| 741       | 21-ID-2       | Electron Spectro-Microscopy (ESM-XPEEM)                                          | Elio Vescovo, Ext. 7399                |
| 741       | 22-IR-1       | Frontier Synchrotron Infrared Spectroscopy (FIS)                                 | Larry Carr, Ext. 2237                  |
| 741       | 22-IR-2       | Magnetospectroscopy, Ellipsometry and Time-Resolved Optical Spectroscopies (MET) | <u>Larry Carr</u> , Ext. 2237          |
| 741       | 23-ID-1       | Coherent Soft X-ray Scattering (CSX)                                             | Claudio Mazzoli, Ext. 8213             |
| 741       | 23-ID-2       | In situ and Operando Soft X-ray Spectroscopy (IOS)                               | <u>Iradwikanari Waluyo</u> , Ext. 3421 |
| 742       | 28-ID-1       | Pair Distribution Function (PDF)                                                 | Milinda Abeykoon, Ext. 2663            |
| 742       | 28-ID-2       | X-ray Powder Diffraction (XPD)                                                   | Sanjit Ghose, Ext. 3611                |
| Beamlines | Under Develop | pment                                                                            |                                        |
| 744       | 9-ID          | Coherent Diffraction Imaging (CDI)                                               | Garth Williams, Ext. 8747              |
| 742       | 27-ID         | High Energy Engineering X-Ray Scattering (HEX)                                   | Michael Drakopoulos, Ext. 6222         |
| 742       | 29-ID-1       | Soft X-ray Nanoprobe (SXN)                                                       | Andrew Walter, Ext. 4055               |
| 742       | 29-ID-2       | NanoARPES and NanoRIXS (ARI)                                                     | Andrew Walter, Ext. 4055               |

- 29 beamlines in operation, 4 under development
- Storage ring: 792m circumference, 3
   GeV, 400 mA operating current
   designed to deliver an electron beam
   with very small emittance (0.5 nm rad H, 8 pm-rad V)
- One of the newest synchrotrons in the world, started operating in 2015 and has a large user community around the US and the world







| BL          | Min. beam size                   | Flux   | Detect<br>or  | Max fr.<br>rate | Robotic<br>sample<br>changer | # samples | Data<br>Acquisiti<br>on GUI | LIMS               |
|-------------|----------------------------------|--------|---------------|-----------------|------------------------------|-----------|-----------------------------|--------------------|
| AMX         | 7x5 μm²                          | 4e12   | Eiger<br>9M   | 200+            | Y                            | 384       | LSDC                        | SynchWeb<br>/ISPyB |
| FMX         | 1x1.5 μm²                        | 3.5e12 | Eiger<br>16M  | 100+            | Υ                            | 384       | LSDC                        | SynchWeb<br>/ISPyB |
| NYX         | 10x10 μm²                        | 1e12   | ADSC<br>HF-4M | 25              | Υ                            | 240       | Blulce                      | None               |
| LiX         | 0.4 mm <sup>2</sup> (scattering) |        | 3x<br>Pilatus |                 | Y                            | 54        | Custom                      | None               |
| XFP         | 0.1 x 0.4 mm <sup>2</sup>        | 1.6e16 | N/A           |                 | N                            | 96        | Custom                      | None               |
| Cryo<br>-EM |                                  |        |               |                 |                              |           | Vendor                      | None               |





# This talk will concentrate on LSDC (Life Sciences Data Collection)



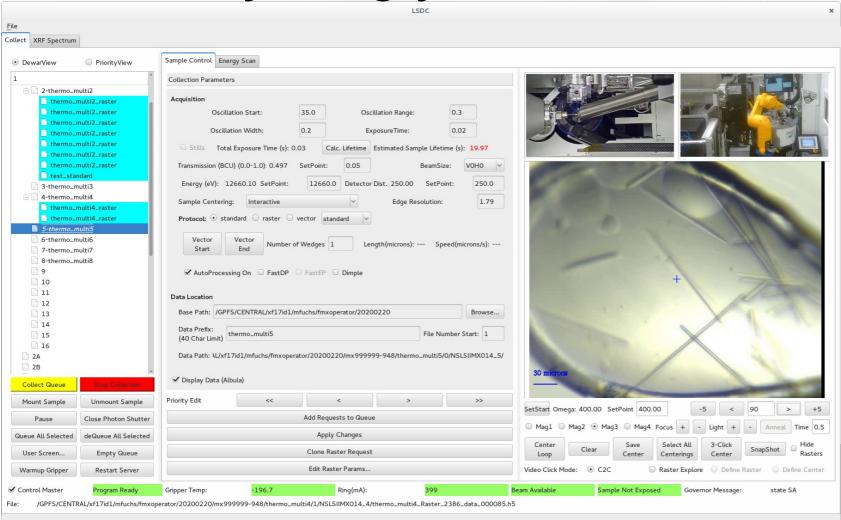


- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?

- New facility with small, intense beams
- Many beamlines already built with many more to come
- Biology beamlines
  - High degree of automation
  - Heterogenous beamline hardware and software ecosystems
  - Large user community
- LSDC



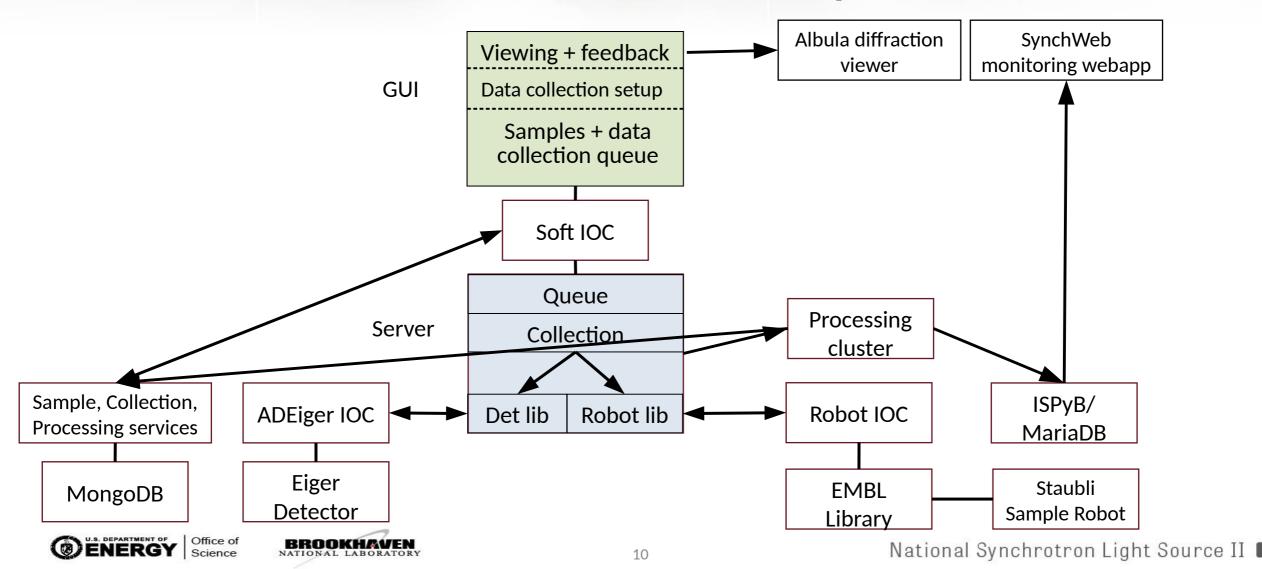



- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?

- Experiments have been implemented
- Sample exchange (as we have seen in Edwin Lazo's talk) is reliable
- Remote experiments are running including automated data collection
- Processing systems effectively providing feedback
- · LIMS system integrated






### Everything you need to collect remotely

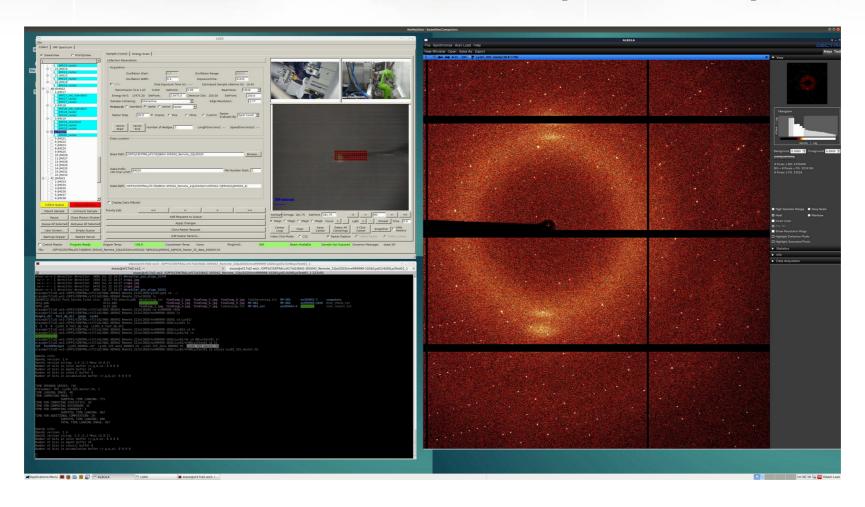


- Layout inspired by MXCube
- Sample viewing/ centering/ rastering feedback area
- Parameters area
- Sample handling and data collection history area



### LSDC and related components

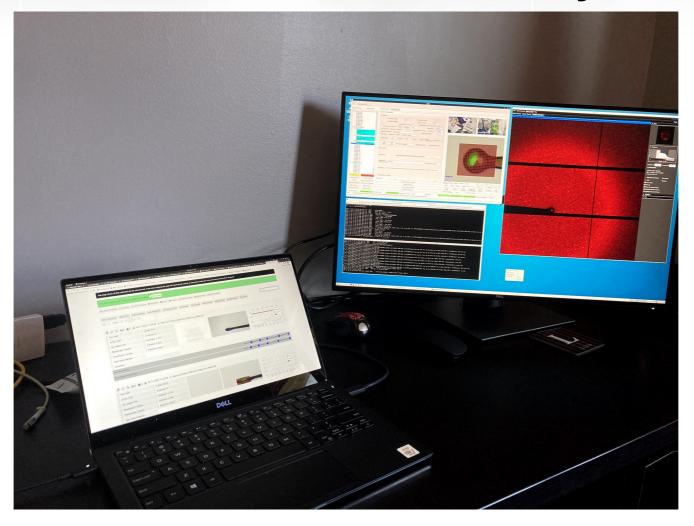



### LSDC: current state at a glance

- Currently used at AMX and FMX
- Python (PyQt) GUI client
  - Configure all typical experiments (standard oscillation, diffraction and fluorescence-based rastering, vector/helical, energy scan)
  - GUI-driven sample exchange
  - Rastering heatmaps
  - Albula (Dectris) for diffraction image visualization
- Python server
  - Perform the queued experiments configured by the user
  - Using the libraries below
  - Communication with databases
  - Hardware configuration management
  - Initiating processing
    - FastDP, Xia2
    - Dimple
    - Chooch, Raddose, Dozor, DIALS Spotfinder, etc...
  - Libraries modularizing PyEpics calls to interact with PVs of the EPICS Control System
    - Detector, robot, general PVs
- On both client and server, many custom components including sample centering/rastering definition/raster feedback view, queuing system






## LSDC GUI and Albula (Dectris) on NX







## LSDC GUI + Albula, Synchweb







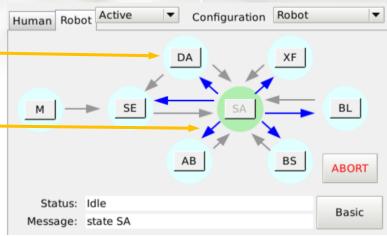
# What challenges do data acquisition systems face?

- Evolving infrastructure
- Faster hardware
- Software improvements
- New techniques
- New beamlines
- Knowledge transfer among developers
- Integration within own facility
- Integration with outside beamlines

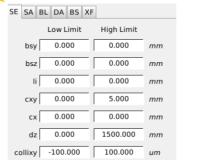




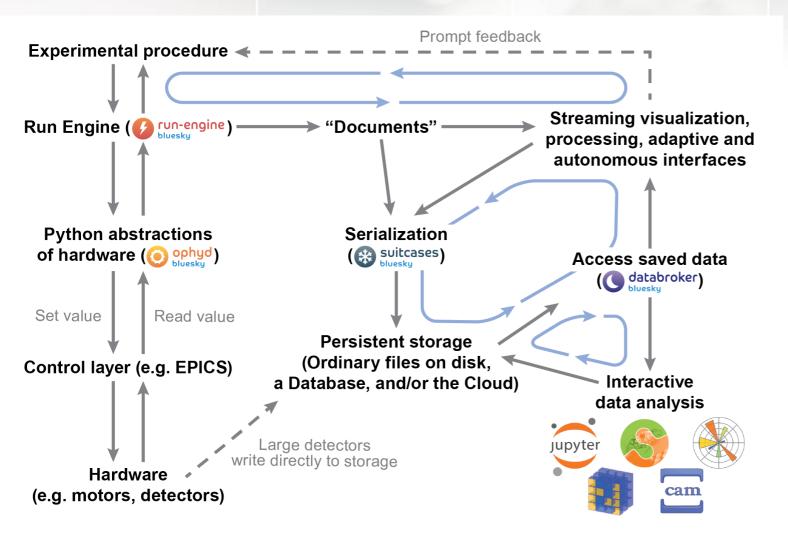
### LSDC Core Modules


- State machine for safe experiment state transitions the Governor
- X-ray fluorescence spectrum using standard libraries (Ophyd, Bluesky, Matplotlib, and PyMca)
- Ophyd/Bluesky for MX experiments (in progress)
- Sample, data collection, data processing information storage via web services
- ISPyB-API library (Diamond Light Source) for ISPyB interaction
- Interaction with Albula (Dectris) for diffraction visualization
- EPICS PV interaction code modularized into libraries






### The Governor manages Experiment States


- Define experiment states with default positions
- Define transitions between states
- Define multiple positions per positioner
  - O Motors (Near, Far, Park, ...)
  - O Valves (Open, Close)
- Define allowed ranges within states
- Test transitions thoroughly once
- From now on, just call transitions to cycle through experiment states



| -Positions |     |       |            |      |            |
|------------|-----|-------|------------|------|------------|
| bsy        | mm  | Down  | -60.000    | Up   | -10.800    |
| bsz        | mm  | Park  | 48.000     | DAQ  | 15.000     |
| li         | mm  | In    | 0.000      | Out  | -100.000   |
| cx         | mm  | In    | 0.000      | Out  | 40.000     |
| сху        | mm  | Near  | 2.000      | Far  | 12.000     |
| dz         | mm  | In    | 220.000    | Out  | 220.000    |
| gx         | um  | Mount | 207300.000 | Work | 206840.000 |
| gx         | um  | Near  | 87300.000  | Park | 180000.000 |
| gy         | um  | Mount | 12900.000  | Work | 12927.299  |
| gz         | um  | Mount | 4900.000   | Work | 4900.000   |
| go         | deg | Mount | 0.000      | Work | 90.000     |
| gpy        | um  | Mount | -100.000   | Work | 10.000     |
| gpz        | um  | Mount | 720.000    | Work | 460.010    |



### Working with Bluesky

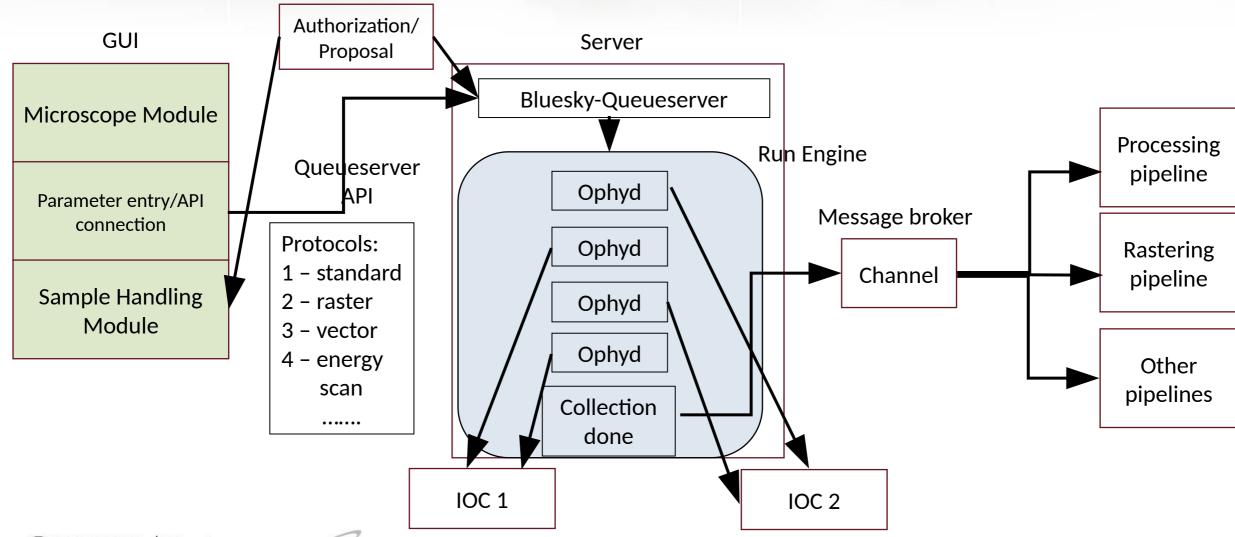


- Developed at NSLS-II and used at most beamlines
- Used at 5 US DOE Light Sources and the Australian Synchrotron
- Modularized data acquisition system
  - Control system abstraction layer
  - Procedure running code
  - Access layer to data
- http://blueskyproject.io

- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?

- Experiments have been implemented
- Sample exchange (as we have seen in Edwin Lazo's talk) is reliable
- Remote experiments are running including automated data collection
- Processing systems effectively providing feedback
- LIMS system integrated
- Modularization well under way






- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?
- Hardware abstraction to enable new beamlines (NYX in progress, more in the future?)
- New experiments
- Minimize disruptions due to infrastructure changes
- Rapid development of processing systems
- Continued modularization opportunities to incorporate/supply to other beamlines and facilities
- · Improved infrastructure for better user and staff experience



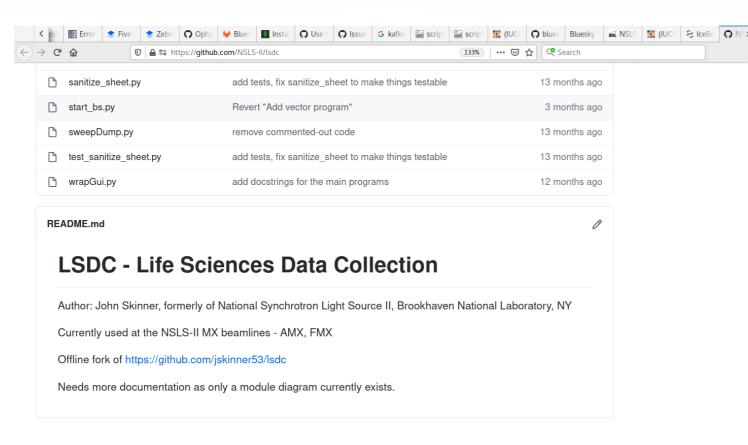


## Proposed future LSDC system - changes








## How LSDC is being prepared for long-term development

- Improving the core scanning code with Ophyd/Bluesky
  - Hardware abstraction layer
  - Offline testing
  - Better modularization
- Replace custom collection queueing code with Bluesky-Queueserver
- Modularization of GUI code
  - Specify a new "microscope" module that can be used at many beamlines to view samples and control experiments
- Software engineering improvements
- Improved processing systems triggered via Kafka message broker
  - More flexible, less hard-coded processing adding multi-crystal, multi-dataset (from Dale's talk)
  - Reprocessing





# LSDC is on Github! https://github.com/NSLS-II/Isdc



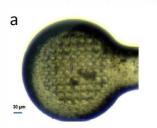
- Future
  - ContinuousIntegration
    - Unit testing
  - pip installation
  - Docker

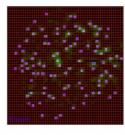


### Common systems being developed

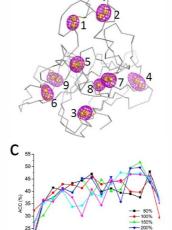
#### NSLS-II as a whole

- Guacamole to complement NX
- Single sign-on
- Direct access to web applications once signed in
- Better integration of proposal system


### LSDC modules


- Bluesky queueing system
- Bluesky GUI experiment configuration module
- Microscope module
- Sample management module
- Externalize processing with Kafka message broker system (Dale's talk from yesterday)




#### <u>PyMDA</u>: microcrystal data assembly using Python – Multi-crystal crystallography and Sulfur-SAD at 5 keV

➤ G. Guo, P. Zhu, Q. Liu (BNL Biology Dept)

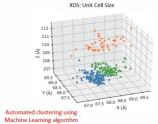


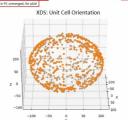


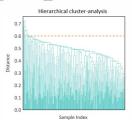
- Data collection at 5 keV (  $\lambda =$  2.48 Å ) from 5-10  $\mu m$  thaumatin crystals
- Strategy of data analysis
  - o Initial data assembly based on CC1/2
  - Crystal and frame rejections based on SmRmerge



<u>Takemaru</u> et al., J. Appl. <u>Crystallogr.</u> **53**, 277 (2020) Guo et al., IUCrJ **6**, 532 (2019) Guo et al., IUCrJ **5**, 238 (2018)


### Ultrafast raster-scanning serial Wypeline crystallography data processing


- ~200 partial datasets for structure solution
- Equally high data quality for detector frame rates of 200, 500 and 750 Hz






Proteinase K structure refined to 2.0 Å resolution  $\underline{R}_{work}$ =16.7% and  $\underline{R}_{free}$ =21.3% (500Hz dataset)







Gao, Y. et al., J. Synchrotron Rad., (2018), 25, 1362-1370

- What opportunities do we have?
- How are we seizing the opportunities?
- How are we developing the systems to meet the challenges of the future?
- Hardware abstraction to enable new beamlines (NYX in progress, more in the future?)
- New experiments
- Minimize disruptions due to infrastructure changes
- Rapid development of processing systems
- Continued modularization opportunities to incorporate/supply to other beamlines and facilities
- · Improved infrastructure for better user and staff experience





# What challenges do data acquisition systems face?

- Evolving infrastructure
- Faster hardware
- Software improvements
- New techniques
- New beamlines
- Knowledge transfer among developers
- Integration within own facility
- Integration with outside beamlines



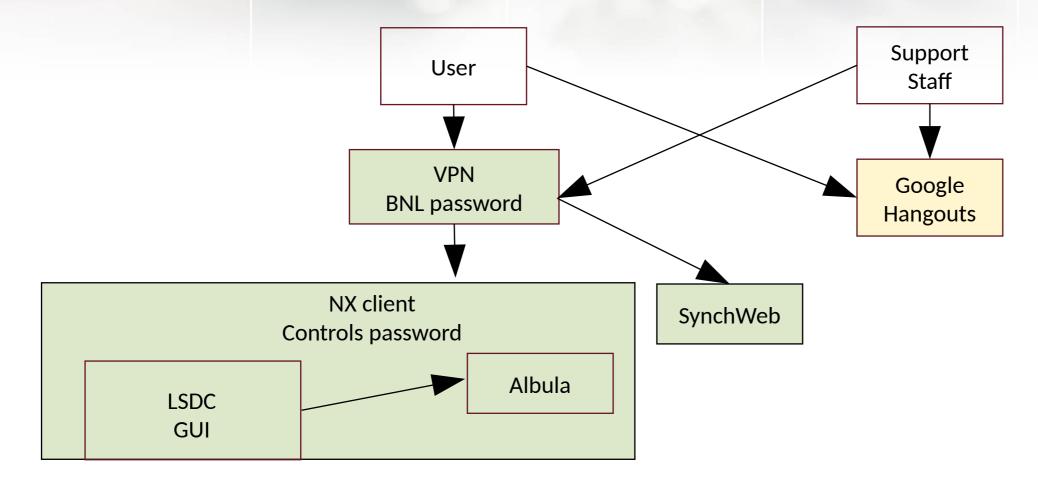


## The future is bright for the NSLS-II beamlines!

- More common infrastructure systems at NSLS-II
  - Good for users
  - Good for staff!
- Development of new cross-beamline software projects
- Bluesky as both a cross-beamline and cross-facility project
- LSDC as a framework for GUI-based data acquisition
- All while keeping the existing users happy!



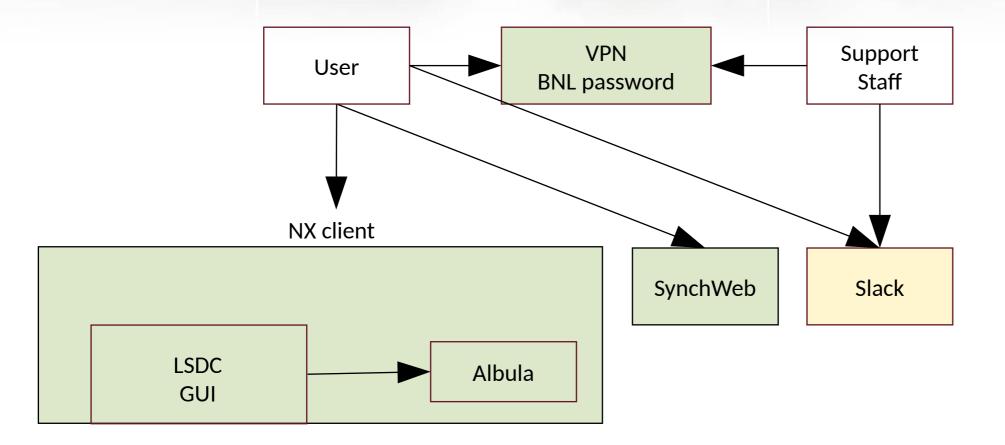



### Thanks!

- John Skinner and Bob Sweet for their long-term work on LSDC and its predecessors
- Beamline staff Stu Myers, Martin Fuchs, Jean Jakoncic, Dale Kreitler, Edwin Lazo in particular
- Data Science and Systems Integration group
  - Tom Caswell, Dan Allan Bluesky originators
  - Marcus Hanwell microscope module
  - Maksim Rakitin CI, packaging, and Ophyd/Bluesky integration
- SynchWeb, ispyb-api developers (Diamond Light Source)
- Albula library (Dectris)






### Current MX beamline situation - what the user sees







### Future MX beamline User View





