

SSRL-SMB-PX talks at MCE 2021

In case you missed it...

Tuesday March 16th
Aina Cohen
Next Generation Remote Experiments

Wednesday March 17th

Art Lyubimov

Crystallography Live: Processing and Analysis

of Xray Diffraction Data in Real Time

Thank you for your attention!

A Rapid Response at SLAC to Combat COVID-19

Fast Tracked Research Leads to Drug and Vaccines in Clinical Trials

Synchrotron & CryoEM research started one year ago and LCLS in August 2020

Proposals awarded time: 51

MC Fragments/inhibitors screened: > 1088

MC PDB deposits: 38 MC Publications: 11

SSRL BL12-1: Structure-guided inactivation of the SARS-CoV-2 spike protein using nanobodies (Koenig, Science 2021)

LCLS-MFX: SARS-CoV-2 main protease structures at nearphysiological temp to guide drug repurposing (Durdagi, bioRxiv/2020)

Cryo-EM: Structure of spike proteins and glycans of human coronavirus NL63 directly from virus particles (Zhang, bioRxiv/2020/245696)

Groups from across the US and abroad used SSRL, LCLS and CryoEM facilities at SLAC for COVID-19 related research

Outline

Remote Access with SMB at SLAC

- Standard @ SSRL/SMB
 - Stanford Auto-Mounting (SAM) system (Cohen *et al.*, J. Appl. Cryst. 35, 720, 2002)
 - Remote Data Collection from anywhere in the world (Soltis et al., Acta Cryst. D64, 210, 2008)
- Advanced features @ Beamline 12-1
 - Serial and Dynamics
 - Elevated Temperatures
 - Humidity Control
- Look to the future

Standard @ SSRL/SMB - Remote Access

NoMachine NX

- Unix-based
- Access to internal network
 - Beamline control
 - SSRL data storage
 - Data processing

Crystal server

- Sample database
- Spreadsheets

Blu-Ice Control Software

- Experiment control, tcl/tk, C/C++
- Support enables user
- Simple and intuitive graphical interface
- (McPhillips et al., J. Synch. Rad. 9, 401, 2002

User support

Zoom, phone, email

Standard @ SSRL/SMB - Shipping

Standard @ SSRL/SMB - Sample Database

Spreadsheet based

- Online accessible
 - Editable
 - Upload/download
- Loads into Blu-Ice
 - Through beamline assignment (database or Blu-Ice)

Beamline control

Sample control

- Anneal, wash
- Queue next sample

- Excitation scans
- MAD scans
 - Runs AutoCHOOCH
 - Displays energies for f', f", plus a calculated remote energy

Beamline control

Sample control

- Anneal, wash
- Queue next sample

- Excitation scans
- MAD scans
 - Runs AutoCHOOCH
 - Displays energies for f', f", plus a calculated remote energy

Beamline control

Sample control

- Anneal, wash
- Queue next sample

- Excitation scans
- MAD scans
 - Runs AutoCHOOCH
 - Displays energies for f', f", plus a calculated remote energy

Beamline control

Sample control

- Anneal, wash
- Queue next sample

- Excitation scans
- MAD scans
 - Runs AutoCHOOCH
 - Displays energies for f', f", plus a calculated remote energy

Standard @ SSRL/SMB - Experimental Setup

UV-Vis Microspectroscopy @ BL9-2

- Non-invasive
- Confirm identity of reaction intermediates trapped within a crystal
- Monitor reactions occurring in the crystal
 - triggering by lasers or within flow cells
- Monitor X-ray induced structural changes
 - e.g. metalloproteins
 - Radiation damage
- Fully automated for spectroscopy between diffraction data (interweave)
- Both the X-ray exposure time and X-ray dose are recorded for each spectrum measured
- in-situ UV-vis microspectrophotometer
 - (Cohen et al., Protein Pept. Lett. 23, 283 2016)

Standard @ SSRL/SMB - Experimental Setup

Screening

- Automatic
 - Exchange samples in 25 seconds
- Loop centering (15 seconds)
- Raster alignment
- Weblce strategy
 - Requires 2 images

Rastering

- Microbeam, matching crystal size
- Polygon, oval, line
- 90° line raster for centering
- Scoring
- Diffraction-based crystal alignment (Song et al., J. Synch. Rad. 14, 191, 2007)

Diffraction images scored automatically Results are displayed in Blu-Ice and Weblce and saved in spreadsheet

Standard @ SSRL/SMB – Weblce and Strategy

Solution 9 Spacegroup P4

282.59 mm To m

Weblce

- MosaicityEnergy(s)
- OscillationAttenuation
- ResolutionInverse beam
- Number of images
- Detector, beamstop distances

> Import collection strategy into Blu-Ice

Coming Soon

• Integrate into Blu-Ice

E 2021Workshop @ NSLSII

Standard @ SSRL/SMB - Data Collection

Standard data collection

- Rotation, wedge
- Helical

Beamline 12-1

- Microbeam: 5 μm² to 100 μm²
- High Intensity: 5 x10¹² photons/sec
- 5-15 keV range, S-SAD phasing optimized
- EIGER 16M (133 Hz or 750 ROI)
- Crystal rotation speeds <90°/s
- Instant feedback
- Automated hit finding + data processing
 - Any dataset more than 5 frames is fully autoprocessed in users' directory
 - XDS, POINTLESS, XTRIAGE, AIMLESS, TRUNCATE
 - MOLEREP, REFMAC5

Standard @ SSRL/SMB - Live Data Analysis

The Interceptor

- Live processing and scoring to track basic diffraction properties of a single crystals in real time
 - Resolution score
 - +max diffraction intensity score
 - Ice ring penalty
 - Elongated spot penalty
- Fully automated, persists in background
- Can handle high-speed bursts (~300 images) up to 100Hz

Art Lyubimov (talked yesterday)

Serial Crystallography at SLAC

Serial Crystallography

SSRL/SMB: 12-1 and MFX

Five Beamlines at SSRL dedicated to Macromolecular Crystallography Research

X-ray Free Electron Laser – LCLS-MFX Instrument

Aina Cohen (talked Tuesday)

SSRL Beam Line 12-1 Synergistic User Operations
Similar Equipment & Controls Software

LCLS MFX

New Rapid Access Proposal Mechanism BL12-1 / Gateway to LCLS

SSRL/SMB: 12-1 and MFX

Standard setups for goniometer and injector

Collaboration between SSRL-SMB & LCLS-HXR staff

Blu-Ice Control Software (developed at SSRL)

- User friendly familiar to the user community
- Highly automated

High Speed Microcrystal Goniometer

Rapid sample motions with +/- 0.5 µm SOC

Automated Sample Exchange with Stanford Robot

- Highly reliable (>1M samples mounted at SSRL)
- Cryogenic studies enable safe transport & storage
- Support room temperature samples at controlled humidity

UV-fluorescence microscopy and visual mapping of crystal samples (Barnes et al., PNAS. 116(19), 9333-9339, 2019)

Advanced Features – Serial Crystallography

Gas Dynamic Virtual Nozzle

Rev. Sci. Instr. 83, 35108, 2012

Mobile Electro-spinning Sample Holder (MESH)

Sierra, Acta Cryst D (2012)

LCP/Viscous Media Injector

Weierstall, Uwe et al. Nature communications 5 (2014)

Mixing Injectors

Lois Pollack (Cornell) collaboration

Sample supply line Nozzle Helium

Nozzle Helium

Mixer shell

Mixing constriction

Calvey, Katz, Pollack. Analytical Chemistry 91-11, (2019)

Advanced Features – Serial Crystallography

Thin polymer crystallization chip

Megan Shelby, Deepshika Shamraj Gilbile, Matthew Coleman, Matthias Frank, Tonya Kuhl LLNL, UC Davis

Advanced Features – Serial Crystallography

Fixed target

Full automation is possible if it fits within the robot gripper

If it has known dimensions and fiducials, we can automate it!

http://www.mitegen.com/ Cohen, et al., PNAS (2014)

Gati et al. IUCrJ (2014)

Feld, et al., J Appl Cryst (2015)

Roedig, et al., Sci Rep (2015)

Lyubimov, et al., Acta Cryst D (2015)

Murray, et al., Acta Cryst D (2015) Gati et al., IUCrJ (2014) Heymann et al. IUCrJ (2014) Murray et al. Acta Crys D (2015) Baxter et al. Acta Crys D (2015) Sui et al. Lab Chip, 16 (2016)

23

Advanced Features - Studies of Protein Dynamics

24

Reactions triggered within crystals during (or *prior to*) data collection (**µs to ms** time scale)

Liquid/Crystal Mixing Injectors

Lois Pollack (Cornell) collaboration

Calvey, Katz, Pollack. Analytical Chemistry 91-11, (2019)

Light activation/Caged Compounds

Jonathan Clinger (Cornell U) SMB-MX Group (SLAC/SSRL)

High voltage jump

Sarah Perry and Shuo Sui (UMass Amherst) SMB-MX Group (SLAC/SSRL)

"Kinetic crystallography"

Cryo-trap intermediates

In assembly for BL12-1

Advanced Features – UV Fluorescence, Triggering

Validating intermediate states

Freeze-trap reactions in cryostream at fixed time-delays after adding substrate to crystal

Monitor/Follow Radiation Damage

Radiation damage is accrued site-specifically around metal centers

Support for photo-triggered reactions

UV light for uncaging compounds, activating reactions All automated!

Fully remote pump probe (timing control)
On-axis system to be installed at BL12-1
and in planning for MFX

Option for UV-light (or other light sources) for time-resolved measurements

Advanced Features - UV Source Photo-Triggering

Time-resolved studies of transcription

Remote collection @ 12-1 crystals exposed to UV light (breaking cage) temperature increase from 100K to 170K rapid helical data collection (2sec/dataset)

Illumination with the UV source breaks the nitrobenzyl group (NPE) *in crystallo* allowing ATP release from RNA-Pol II, metal coordination (blue) and phosphodiester bond formation (red).

The Calero Lab (University of Pittsburgh)

Advanced Features – Elevated Temperatures

- Measurements at physiological temperatures
- Understanding temperature effects in protein structure and interactions
- Potentially no additional disorder from cryoprotectants
- Side chain conformation insights
- Time scale resolution, transient steps

Aina Cohen (talked Tuesday)

Advanced Features – Elevated Temperatures

First used at LCLS-MFX, but now standard at 12-1

Samples inside at controlled humidity

CP-111-105

Advanced Features – Elevated Temperatures

Fraser Group (UCSF - QBI Corona Virus Research Group)

- Studies of conserved "macro domain," enzyme shown to promote virulence in coronavirus
- Screening of fragments done at BL9-2 and BL12-2
- Measurements at physiological temperatures associated with infection in humans were done at BL12-1
- Understanding how temperature affects the enzyme structure and interactions may provide insight to develop of antiviral therapeutics

James Fraser (PI), Michael Thompson Support: Jeney Wierman and Silvia Russi

ОВІ

Advanced Features – Hydration/Dehydration

1.7 Å

a=87.8 Å, b=140.8 Å, c=233.1 Å, P212121

a=84.6 Å, b=142.0 Å, c=233.8 Å, P212121

Bovine Liver Catalase

- starting RH=96%, final RH=90%, 1 % RH steps,
- 300 seconds equilibration time between steps

Humidity range of 30.0% to 99.8% ±0.05% RMS

Advanced Features– Hydration/Dehydration

Advanced Features – Nozzle Switcher

Arinax Humidity Control Device

Automated switch between humid RT or cryo-conditions

- Flash cooling after controlled dehydration experiments
- Samples both cryo and RT supported for same beamtime
- Flash-cooling experiments to trap reaction intermediates

Flash-cooling 60 ms to switch

In assembly for BL12-1

Advanced Features – Nozzle Switcher

Cryo-trapping Dynamics

Use in conjunction with light, spray, drop

Cryo-trapping Experiment to Observe Phytochrome Photoconversion Intermediates

Jonathan Clinger, Sethe Burgie, Rick Vierstra, and George N. Phillips Jr.

Summary

Remote Access with SMB at SLAC

- Standard @ SSRL/SMB
 - Stanford Auto-Mounting (SAM) system (Cohen et al., J. Appl. Cryst. 35, 720, 2002)
 - Remote Data Collection from anywhere in the world (Soltis et al., Acta Cryst. D64, 210, 2008)
- Advanced features @ Beamline 12-1
 - Serial and Dynamics
 - Elevated Temperatures
 - Humidity Control
- Look to the future

- Multi-crystal database
- Blu-Ice Strategy
- Dynamics automation
 - Timing
 - Automate EIGER with gonio
 - 90°/second, fast framing, all remote
- Optical sources, Raman installment
 - More sources! More fibers!
- Nozzle switcher installment
- New optics: CRLs, multilayer monochromator
- EIGER2 XE 16M
 - move EIGER 16 to BL12-2

Display Type: Display Results V Image Display Type: Hide Images V Edit Crystal Edit Run Definition																
ľ	R	w Port	Port CrystallD Protein GridSampleLocation Images		Comment		Score	UnitCell	Mosaicity	Rmsr	BravaisLattice	Resolution	SystemWarning	Move		
	0) A1	A1	Thaumatin		A1_00001.mccd A1_00002.mccd	Please place ba	rcode pin in this port	0.911	57.85 57.85 150.09 90.0 90.0 90.0	0.025	0.025	P4,P422	1.470		
		L A2	A2	Thaumatin		A2_00001.mccd A2_00002.mccd			0.878	57.74 57.74 150.04 90.0 90.0 90.0	0.150	0.039	P4,P422	1.320		
		2 A3	A3	Thaumatin		A3_00001.mccd A3_00002.mccd			0.925	57.72 57.72 150.11 90.0 90.0 90.0	0.025	0.022	P4,P422	1.360		
		3 A4	A4	Thaumatin		A4_00001.mccd A4_00002.mccd			0.261	57.64 57.64 149.64 90.0 90.0 90.0	1.500	0.041	P4,P422	1.820		
		4 A5	A5	Thaumatin		A5_00001.mccd A5_00002.mccd			0.880	58.66 58.66 149.71 90.0 90.0 90.0	0.075	0.032	P4,P422	1.600		
		5 A6	A6	Thaumatin					0.841	57.62	0.125	0.039	P4.P422	1.800		

- Multi-crystal database
- Blu-Ice Strategy
- Dynamics automation
 - Timing
 - Automate EIGER with gonio
 - 90°/second, fast framing, all remote
- Optical sources, Raman installment
 - More sources! More fibers!
- Nozzle switcher installment
- New optics: CRLs, multilayer monochromator
- EIGER2 XE 16M
 - move EIGER 16 to BL12-2

- Multi-crystal database
- Blu-Ice Strategy
- Dynamics automation
 - Timing
 - Automate EIGER with gonio
 - 90°/second, fast framing, all remote
- Optical sources, Raman installment
 - More sources! More fibers!
- Nozzle switcher installment
- New optics: CRLs, multilayer monochromator
- EIGER2 XE 16M
 - move EIGER 16 to BL12-2

- Multi-crystal database
- Blu-Ice Strategy
- Dynamics automation
 - Timing
 - Automate EIGER with gonio
 - 90°/second, fast framing, all remote
- Optical sources, Raman installment
 - More sources! More fibers!
- Nozzle switcher installment
- New optics: CRLs, multilayer monochromator
- EIGER2 XE 16M
 - move EIGER 16 to BL12-2

- Multi-crystal database
- Blu-Ice Strategy
- Dynamics automation
 - Timing
 - Automate EIGER with gonio
 - 90°/second, fast framing, all remote
- Optical sources, Raman installment
 - More sources! More fibers!
- Nozzle switcher installment
- New optics: CRLs, multilayer monochromator
- EIGER2 XE 16M
 - move EIGER 16 to BL12-2

Acknowledgements

SSRL SMB

Aina Cohen
Mike Soltis
Silvia Russi
Art Lyubimov
Clyde Smith
Tzanko Doukov
Jinhu Song
Irimpan Mathews

Edgar Estebanez
Scott McPhillips
Mike Hollenbeck
Paul Ehrensberger
Renato Avelar
Robin Frank
Scott Mitchell
Henry Meier

LBNL/ALS

James Holton

If you have additional questions, please email me at jwierman@slac.stanford.edu

Questions we ask ourselves

- How much processing do we automate?
- How much data collection automation/autonomous?
 - The thought: the further the user gets from the nuts and bolts of data collection, the less they appreciate intricacies in the data.
 - "Automation is more work for staff, less for users" N.P.
- When do we intervene with data collection?
 - e.g. "Yikes, they are totally missing the crystal!"
- Where does data come from for strategy?
 - Can users override acquired data?
 - Does every collection generate a strategy?
- How do we handle storing data?
 - Cloud?
 - Massive physical storage?
 - Junk it!
- How to teach new users?
- How much is too much? More widgets? More tabs? More options?

Front End Glamour Shot

