ML Resources

Yihui (Ray) Ren, Shinjae Yoo, Meifeng Lin

<u>yren@bnl.gov</u>

May 07 2021

Outline

- CSI Organization Overview
- ML group (Human resources?)
- Computation resources
- Learning materials
- Funding opportunities

Computational Science Initiative (CSI)

- <u>Computer Science and Applied Mathematics</u> [Math, <u>ML</u>, CS]
- Computational Science Laboratory [Quantum, HPC]
- Computing for National Security [ACL]
- Scientific Data and Computing Center (SDCC)
- Computation and Data-Driven Discovery (C3D)

COMPUTER SCIENCE AND APPLIED MATHEMATICS

*Reports to Kerstin Kleese van Dam, Director of Computational Science Initiative ESH Coordinator – Bob Colichio, Pat Carr

Approved: Barbara Chapman

Date: February 01, 2021

BROOKHAVEN

Brookhaven Science Associates

https://www.bnl.gov/orgcharts/CCSM.pdf

Machine Learning Group

- Group Lead: Dr. Shinjae Yoo
- 8 staff scientists
- 6 postdocs (+2 will join in May)
- 3 full time software engineers
- Many collaborative projects with other departments and other labs.

New Members

Yumin Liu **Xihaier Luo**

Bayesian

Optimization,

Simulation.

Surrogate

Modeling,

PDEs

Spatio-

temporal

Multi-task

Learning,

Computer

Vision

Sandeep Mittal Real-time System Modeling, UQ, UQ, Stochastic Optimization, Development, Edge

Inference.

Autonomous

Control.

Computer

Yang ML Software Stack Continuous Integration, Containerization

Ziming

Chuntian Cao

Multimodal

Analysis,

Inverse Problem

Solving,

Energy

Storage.

Matthew

Carbone'

Microscopic

Theory,

Methods for

Quasi-particle

Systems, ML

for Chem-

informatics.

Electrochemistry Computational

Xin Dai

Longitudinal

Modeling.

Quantum

Mechanics.

Multi-modal

Analytics

Patrick

Yi Huang

Spatiotemporal Modeling, Medical Data Analytics, Graph/ Network Analysis

Johnstone Distributed Algorithms. Large-scale Training. Stochastic Optimization

Computation Resources (SDCC)

- 108 P100-based nodes with 2 P100s per node
- 5 V100-based nodes with 8 V100s per node
- SDCC is in the process of procuring the next-gen IC.
- If you have any feedback or suggestions on SDCC resources, feel free to contact Christopher Hollowell <u>hollowec@bnl.gov</u>.

Computation Resources (CSI)

- Internal (CSI):
 - DGX-2, 1 testbed. "minerva"
 - 16x V100 (32GB) per node
 - DGX A100 + DDN AI400X, 1 testbed, "athena"
 - 8x A100 (40GB) per node
 - RTX, 1 devbox "mlgpu01"
 - 8x RTX 2080Ti
 - Desktops and laptops
 - External HPC (Summit, NERSC, etc...)

IC Volta (DGX-1)

- 8x V100 (32GB) GPUs
- Hybrid cube-mesh topology
- 2x 24-core Xeon 8175M (96 logic cores in total)
- 768 GB system memory
- 2 TB NVMe SSD
- 2x AWS P3 (16 GPUs in total)
- Connected through 1.25GB/s Ethernet.
- (AWS P3dn.24xlarge)

Image Ref: https://images.nvidia.com/content/pdf/dgx1-v100-systemarchitecture-whitepaper.pdf

DGX-2 and NVSwitch

- 16x V100 (32GB) GPUs
- 12x on-node NVSwitches
- Each NVSwitch has 18 NVLink ports (16 in use).
- 2x 24-core Xeon 8186 (96 logic cores in total)
- 1.5 TB system memory
- 30 TB NVMe SSD in 8-way RAID0

Image Ref:

https://images.nvidia.com/content/pdf/nvswitch-technicaloverview.pdf https://www.nvidia.com/en-us/data-center/hgx/

IBM Power System AC922 (8335-GTH)

Server Block Diagram Power Systems AC922 with NVIDIA Tesla V100 with Enhanced NVLink GPUs

- 4x V100 (32GB) GPUs
- 2x IBM 20-core Power9 CPU (160 logic cores in total)
- Each IBM Power9 CPU has 6 NVLinks.
- Two CPUs are connected by a SMP bus (32GB/s).
- 4x IBM P9 systems (16 GPUs in total)
- Connected through InfiniBand (24 GB/s).
- The tested system uses GPFS (remote filesystem) with block size of 16 MB and bandwidth ~18 GB/s.

Benchmark Results

- ResNet152
 - CNN-based computer vision model
 - Model contains 60.34M parameters
 - Training on ImageNet dataset (150GB)
- BERT-SQuAD
 - The state-of-the-art natural language processing model
 - Model contains 109.5M parameters
 - Fine-tuning on Stanford Question Answering Dataset
- Similar linear scaling for both AWS-P3 and DGX2 up to 8 GPUs
- DGX2 has better linear weak scaling up 16 GPUs

DGX A100 + DDN AX400

- Direct Data I/O through PCIe bypassing host bounce buffer.
- Promised to reach <u>40GB</u>/s between DGX and AX400.

2 x AMD EPYC 7742 64-Core Processor 8x A100 GPU (40GB) 2 TB memory 14 TB 4-way raid0 for data 2 TB raid1 for code 6 x IB ConnectX-6 VPI HDR/200GbE

Image credit: https://www.ddn.com/ https://developer.nvidia.com/blog/gpudirect-storage/

Learning materials

- AI/ML working group (lead by Meifeng, <u>under construction)[link]</u>
 - In our plan, the purpose of the BNL AI/ML working group is to
 - Form a lab-wide AI/ML community to share common interests, challenges and collaboration opportunities
 - Provide timely and appropriate training events to the lab staff on fundamentals of scientific AI/ML
 - Share progress of scientific AI/ML to the lab community via seminars/workshops
 - Possible activities:
 - Bi-weekly journal clubs, ML/AI seminars
 - Tutorials and summer schools
 - GPU <u>hackathons</u>
- SDCC JupyterHub [link]

Funding Opportunities

- LDRD collaborations
 - Targeting scientific applications
 - Inspiring novel AI algorithms
 - Deploying AI solutions into products
- SciDAC Institutes (in future)
 - Currently, Shinjae co-leads the AI group in <u>RAPIDS2</u> institute.
 - We expect future institutes targeting HEP and NP.
- ASCR proposal calls