Multi-dimensional re-weighting via Deep Set Neural Networks

NPPS joint meeting 07th May 2021 Stephen Jiggins, Fang-Ying Tsai

Project Participants for the VH(bb) analysis and Google-ATLAS R&D

John Hobbs, Giacinto Piacquadio, Torre Wenaus, Alexei Klimentov

Outline

- Deep Set Neural Networks framework.
 - Motivations
 - The DSNN model
 - Closure checks
- Computing Performance
 - CPU vs GPU
 - Memory
- Next Steps

Deep Sets Neural Network reweighting (DSNNr)

- Why are we interested in DSNNr?
 - Looking for a CPU/GPUs intensive ML task for the US ATLAS Google project as a use case.
 - Ultimately we want to achieve high utilization of using CPU/GPUs for ML work.
 - We can have a generic classification for VH(bb) as well as VH(cc) analyses in both boosted and resolved regimes.
 - → generate a mapping function between two MC configurations that is independent of the reconstruction scheme.

- Our framework is built based on the ParticleFlow Neural Network.
 - It's the application of the algorithm.
 - It's a fresh technique in the analyses/ATLAS.

Deep Sets Neural Network reweighting (DSNNr)

DSNN architecture (<u>ref.</u>)

$$f(\{x_1, x_2...x_M\}) = F(\sum_{i=1}^{M} \Phi(x_i))$$

- Permutation invariance sets. The NN will learn the same when permuting the input objects.
- Φ : to embed datasets into a vector space from x elements $\rightarrow R^{\ell}$

$$\{x_1, x_2...x_M\} \xrightarrow{\text{mapping through a NN}} \begin{bmatrix} obj_1 \\ obj_2 \\ ... \\ obj_\ell \end{bmatrix}$$

- Adding up all particle representations in multi-dimensional space.
- F: applying a nonlinear transformation yielding event representations from R^{ℓ} elements $\rightarrow Y$

FY. Tsai

DSNNr Features

 Sanity checks: MCa v.s. MCa x dR(bb) weights. (full features, pt, eta phi, mass, see <u>here</u>.)

DSNNr Observables

- Sanity checks: MCa v.s. MCa x dR(bb) weights.
- The framework is working (and we also learn a lot about our dataset)!

Computing Performance among CPUs & GPUs

- Our system Information:
- We run on Lxplus with a GPU/CPU via a Docker image.
- HTCondor batch jobs.
- TensorFlow version: 2.4.1
- Python version: 3.6.9
- CUDA v.11.2 /cuDNN

- \Rightarrow Each epoch's time consuming is from ~100s (CPU) to ~7s (GPU)!
- Running the whole application with ~100,000 events takes 40 mins on CPUs+GPUs, and 3 hours on CPUs. (~50 epochs)
- ☆ About 10 GB memory usage (1M events each).

Computing Performance among CPUs & GPUs

- Training the dense neural network with 5 layers of 20 nodes v.s. a 20 layer network with 100 nodes is approximately the same amount of time.
 Having more GPUs would benefit us little.
- Increase GPU utilization:
 batch size = 2000 takes 7 sec.
 batch size = 100,000 takes 2 sec.
- If enough memory to fit.
 Warning of increasing batch size, <u>here</u>
- \thickapprox Wait for about 1-2 sec to go from epoch to the next.

For 1 epoch,

What Next?

- Aim to get this DSNN project done in 3 months (by the end of June or so).
 - Train on different samples, e.g. ttbar, W+jets...
 - Compare it with BDTr performance.
 - Validation.
- Deploy this technique to wherever it could come in handy.
 - VH(bb/cc) analysis framework.
 - Instead of generating 3*nominal events (nominal + variations) to make uncertainties, we can store the weights into a vector once the NN learns the differences.

-> Save the disk storage, save the CPU usage!

- Run this DSNN framework with the BNL facilities
 - submit jobs to the SLURM cluster. (Thanks to Doug Benjamin)
 - use Jupyter to access the resources.
- Run this DSNN framework with Google facilities.
 - will start running on CPUs using a small fraction of the dataset. (Fernando?)

Discussions - CPU vs GPU

- Why GPUs are better?
 - CPUs tend to be working on single program -> increase the core clock speed to get better performance.
 - GPUs were originally designed for 3D rendering -> increase the memory clock.
 - GPU wins against CPU in execution throughput of massively parallel programs.

Fig.	CPU Optimized for Serial Tasks	Or	GPU Optimized for Many Parallel Tasks	
			Can each cor	'e

Can each core of CPU vs GPU be compared in terms of computing cost?

BDTr recap

The modeling uncertainty is calculated through Boosted Decision Tree reweighting (BDTr) technique in the current VH(bb) analysis. (Stephen's talk) map two MC predictions and take their differences as a systematic.

