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• Deep Set Neural Networks framework.
     -  Motivations
     -  The DSNN model
     -  Closure checks

• Computing Performance
     -  CPU vs GPU
     -  Memory

• Next Steps



Deep Sets Neural Network reweighting (DSNNr)
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• Why are we interested in DSNNr?
     - Looking for a CPU/GPUs intensive ML task for the US ATLAS Google 
       project as a use case.  
     - Ultimately we want to achieve high utilization of using CPU/GPUs for ML 
       work.
     - We can have a generic classification for VH(bb) as well as VH(cc) analyses 
       in both boosted and resolved regimes. 
        → generate a mapping function between two MC configurations 
             that is independent of the reconstruction scheme.

• Our framework is built based on the ParticleFlow Neural Network. 
     - It’s the application of the algorithm.
     - It's a fresh technique in the analyses/ATLAS.

FY. TsaiNPPS



• DSNN architecture (ref.)

- Permutation invariance sets. The NN will learn the same when permuting 
the input objects.

- 𝛷: to embed datasets into a vector space from 𝒙 elements → Rℓ

- Adding up all particle representations in multi-dimensional space. 
- F: applying a nonlinear transformation yielding event representations from 

Rℓ  elements →Y

Deep Sets Neural Network reweighting (DSNNr)
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The choice of the distributions through a NN
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https://pkomiske.com/publication/efns/
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DSNNr Features
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• Sanity checks: MCa v.s. MCa x dR(bb) weights. (full features, pt, eta phi, 
mass, see here.) 
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✩ The NN is able to 

learn mapping these 
two perfectly! 

Weight = Prob_MCb/Prob_MCa

http://fyweb.web.cern.ch/fyweb/SampleTest6_Shape_100epochs_area1.html
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DSNNr Observables
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• Sanity checks: MCa v.s. MCa x dR(bb) weights.
• The framework is working (and we also learn a lot about our dataset)!
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Computing Performance among CPUs & GPUs
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• Our system Information:
 - We run on Lxplus with a GPU/CPU via a Docker image.
 - HTCondor batch jobs.
 - TensorFlow version: 2.4.1
 - Python version: 3.6.9
 - CUDA v.11.2 /cuDNN

✩ Each epoch’s time consuming is from ~100s (CPU) to ~7s (GPU)!
✩ Running the whole application with ~100,000 events takes 40 mins on 

CPUs+GPUs, and 3 hours on CPUs. (~50 epochs)
✩ About 10 GB memory usage (1M events each).

NPPS
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• Training the dense neural network with 5 layers of 20 nodes v.s. a 20 
layer network with 100 nodes is approximately the same amount of time.

    -> Having more GPUs would benefit us little. 

✩  Increase GPU utilization: 
         batch size = 2000 takes 7 sec. 
         batch size = 100,000  takes 2 sec. 
✩ Wait for about 1-2 sec to go from epoch to the next.

1. If enough memory to fit.
2. Warning of increasing batch size, 

here

CPU

GPU

Load numpy 
dataset

RAM

Neural network 
computations

RAM offload

For 1 epoch,

Computing Performance among CPUs & GPUs

NPPS

https://arxiv.org/pdf/1609.04836.pdf
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What Next?
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• Aim to get this DSNN project done in 3 months (by the end of June or so).
     - Train on different samples, e.g. ttbar, W+jets… 
     - Compare it with BDTr performance.
     - Validation. 

• Deploy this technique to wherever it could come in handy. 
     - VH(bb/cc) analysis framework.
     - Instead of generating 3*nominal events (nominal + variations) to make 
       uncertainties, we can store the weights into a vector once the NN 
       learns the differences. 
       -> Save the disk storage, save the CPU usage!

• Run this DSNN framework with the BNL facilities 
     - submit jobs to the SLURM cluster. (Thanks to Doug Benjamin)
     - use Jupyter to access the resources.

• Run this DSNN framework with Google facilities. 
- will start running on CPUs using a small fraction of the dataset. (Fernando?)

NPPS
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Backup
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Discussions - CPU vs GPU 
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• Why GPUs are better?

   - CPUs tend to be working on single program -> increase the core clock 
      speed to get better performance. 
   - GPUs were originally designed for 3D rendering -> increase the   
      memory clock.
   - GPU wins against CPU in execution throughput of massively parallel 
     programs.

Fig.

Can each core of CPU vs GPU be 
compared in terms of computing cost?

NPPS

http://blog.itvce.com/2016/03/22/dust-free-nvidia-grid-and-a-gpu-deep-dive-guest-blog-post-by-richard-hoffman/


BDTr recap
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• The modeling uncertainty is calculated through Boosted Decision Tree 
reweighting (BDTr) technique in the current VH(bb) analysis. (Stephen’s talk) -  
map two MC predictions and take their differences as a systematic.

events (MC Q  + MC P) are sorted by pTV, 
mass, dR… etc. 13 observables.

✩ Each layer of the 
tree is a cut on 
the variable. 

✩ BDT algorithm 
decides the cut 
priorities based 
on the variable 
and cut 
boundary that 
yields the best 
S/B. train classifier on (MC_P * pTV 

weights) vs MC_Q 
- Trees are built based on the 
weighted events from the 
previous tree.
- Average of all the trees to get 
s(x).

Apply the classifier 
ratio to the nominal 
to obtain the 
systematic shape.

• It works well.
FY. Tsai

https://indico.cern.ch/event/995610/contributions/4209550/attachments/2180821/3684224/BDTr-Pedagogical.pdf

