sPHENIX Status Report

Ejiro Umaka on behalf of sPHENIX Collaboration

RHIC & AGS Annual Users' Meeting 2021

Virtual, June 8-11, 2021

SPHE<mark>N</mark>IX

Highlights of this talk:

- sPHENIX science mission & core physics program
- sPHENIX detector & beam use proposal
- Projected results & construction update

Parallel sPHENIX talks in previous days:

- Future Cold-QCD Physics Program with sPHENIX (Jin Huang)
- sPHENIX Heavy Flavor Overview (Cameron Dean)

sPHENIX Science Mission

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

The goals of experiments at RHIC and the LHC as a result of the 2015 Long Range Plan for Nuclear Science are two-fold :

- To map the QCD phase diagram with experiments planned at RHIC
- To probe the inner workings of quark-gluon plasma (QGP) by resolving its properties at shorter and shorter length scales

Report from sPHENIX

sPHENIX Science Mission

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

The goals of experiments at RHIC and the LHC as a result of the 2015 Long Range Plan for Nuclear Science are two-fold :

- To map the QCD phase diagram with experiments planned at RHIC
- To probe the inner workings of quark-gluon plasma (QGP) by resolving its properties at shorter and shorter length scales
- A state-of-the-art jet detector called sPHENIX is under construction to elucidate properties of the QGP at shorter and shorter length scales

sPHENIX Collaboration

- Officially formed in 2016
- More than 320 members from 84 institutions in 14 countries as of 2021
- Over 100 bi-weekly general meetings since inception

Members from around the world gathered around a common science goal

sPHENIX Collaboration

- Officially formed in 2016
- More than 320 members from 84 institutions in 14 countries as of 2021
- Over 100 bi-weekly general meetings since inception

Members from around the world gathered around a common science goal

Guided by the science mission, sPHENIX aims to :

probe the QGP in different ways :

Vary probe's momentum and angular scale

Guided by the science mission, sPHENIX aims to :

probe the QGP in different ways :

- Vary probe's momentum and angular scale
- Vary probe's mass and momentum

Guided by the science mission, sPHENIX aims to :

probe the QGP in different ways :

- Vary probe's momentum and angular scale
- Vary probe's mass and momentum
- Vary probe's size

Cold QCD

Vary temperature of QCD matter

Guided by the science mission, sPHENIX aims to :

probe the QGP in different ways :

- Vary probe's momentum and angular scale
- Vary probe's mass and momentum
- Vary probe's size
- Cold QCD physics : transverse single spin asymmetries (TSSAs)

Calorimetry

- Outer Hadronic Calorimeter (oHCAL)
- Inner Hadronic Calorimeter (iHCAL)
- Electromagnetic Calorimeter (EMCAL)

Magnet

 1.4T superconducting solenoid used by the BaBar experiment

Tracking

- Time Projection Chamber (TPC)
- Intermediate Silicon Tracker (INTT)
- MAPS-based Vertex Tracker (MVTX)

Performance

- High data rate : read out rate of 15 kHz for all subdetectors
- **Acceptance :** hermetic coverage over full azimuth & pseudorapidity $|\eta| \le 1.1$ for the tracking & calorimeter systems

sPHENIX Tracking System

MVTX : high resolution vertexing

- 3 layers of Monolithic Active Pixel Sensors based on ALICE ITS-II
- Nearest to the collision point, spatial resolution of 5 µm for tracks with p_T >1 GeV

INTT : pileup event separation

- Silicon strip detector surrounding the MVTX
- Associates fully reconstructed tracks with the event that produced them

TPC : momentum measurement

- Compact (r = 80 cm) & main tracking element filled with Ne-CF₄ gas mixture
- Ungated, with GEM-based read out, spatial resolution of < 200 μm</p>

sPHENIX Tracking System

MVTX : high resolution vertexing

- 3 layers of Monolithic Active Pixel Sensors based on ALICE ITS-II
- Nearest to the collision point, spatial resolution of 5 µm for tracks with p_T >1 GeV

INTT : pileup event separation

- Silicon strip detector surrounding the MVTX
- Associates fully reconstructed tracks with the event that produced them

TPC : momentum measurement

- Compact (r = 80 cm) & main tracking element filled with Ne-CF₄ gas mixture
- Ungated, with GEM-based read out, spatial resolution of < 200 µm

Open heavy flavor measurement

The MVTX higher resolution, read out rate, and larger acceptance compared to previous RHIC detectors will enable a state-of-the art open heavy flavor program at RHIC

sPHENIX Calorimeter System

Hadronic calorimetry

- First at RHIC (at mid-rapidity)
- Plastic scintillating tiles + tilted steel plates with embedded WLS fibers (oHCAL); scintillating tiles + Al plates for the iHCAL
- Overall tile segmentation of $\Delta \eta \times \Delta \phi \approx 0.1 \times 0.1$

Electromagnetic calorimetry

- Scintillating fibers in tungsten and epoxy
- High segmentation for HI collisions : $\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025$

Good energy resolution : $\sigma_E/E < 15\%/\sqrt{E}$

sPHENIX Calorimeter System

Hadronic calorimetry

- First at RHIC (at mid-rapidity)
- Plastic scintillating tiles + tilted steel plates with embedded WLS fibers (oHCAL); scintillating tiles + Al plates for the iHCAL
- Overall tile segmentation of $\Delta \eta \times \Delta \phi \approx 0.1 \times 0.1$

Electromagnetic calorimetry

- Scintillating fibers in tungsten and epoxy
- High segmentation for HI collisions : $\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025$

Good energy resolution : $\sigma_E/E < 15\%/\sqrt{E}$

Jet measurement

- The large hadronic calorimeter acceptance (full azimuth & pseudorapidity |η| ≤ 1.1) enables unbiased selection (& triggering in p+p) for jets
- Improves jet resolution & extends the range for high p_T single hadron measurements

sPHENIX Beam Use Proposal (BUP) sPH-TRG-2020-001, August 31, 2020.

Year	Species	$\sqrt{s_{NN}}$ [GeV]	Cryo Weeks	Physics Weeks	Rec. Lum. <i>z</i> <10 cm	Samp. Lum. $ z < 10$ cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) <i>nb</i> ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$ $p^{\uparrow}+Au$	200	24 (28) -	12 (16) 5	0.3 (0.4) pb^{-1} [5kHz] 4.5(6.2) pb^{-1} [10%-str] 0.003 pb^{-1} [5kHz] 0.02 pb^{-1} [10%-str]	45 (62) <i>pb</i> ⁻¹ 0.11 <i>pb</i> ⁻¹
2025	Au+Au	200	24 (28)	20.5 (24.5)	$13 (15) nb^{-1}$	21 (25) nb ⁻¹

Year 1 (2023) :

- Commissioning high multiplicity Au+Au run
- Measurement of standard Au+Au candles at RHIC

sPHENIX Beam Use Proposal (BUP) sPH-TRG-2020-001, August 31, 2020.

Year	Species	√ <i>s_{NN}</i> [GeV]	Cryo Weeks	Physics Weeks	Rec. Lum. <i>z</i> <10 cm	Samp. Lum. $ z < 10$ cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) <i>nb</i> ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$ $p^{\uparrow}+Au$	200 200	24 (28) -	12 (16) 5	0.3 (0.4) <i>pb</i> ⁻¹ [5kHz] 4.5(6.2) <i>pb</i> ⁻¹ [10%-str] 0.003 <i>pb</i> ⁻¹ [5kHz] 0.02 <i>pb</i> ⁻¹ [10%-str]	45 (62) <i>pb</i> ⁻¹ 0.11 <i>pb</i> ⁻¹
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) <i>nb</i> ⁻¹	21 (25) <i>nb</i> ⁻¹

Year 2 (2024) :

- Commissioning p+p
- $p^{\uparrow}+p^{\uparrow}$, $p^{\uparrow}+Au$: HI reference set and cold QCD

sPHENIX Beam Use Proposal (BUP) sPH-TRG-2020-001, August 31, 2020.

Year	Species	√ <i>s_{NN}</i> [GeV]	Cryo Weeks	Physics Weeks	Rec. Lum. <i>z</i> <10 cm	Samp. Lum. $ z < 10$ cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) <i>nb</i> ⁻¹	4.5 (6.9) <i>nb</i> ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$ $p^{\uparrow}+Au$	200	24 (28) -	12 (16) 5	0.3 (0.4) <i>pb</i> ⁻¹ [5kHz] 4.5(6.2) <i>pb</i> ⁻¹ [10%-str] 0.003 <i>pb</i> ⁻¹ [5kHz]	45 (62) <i>pb</i> ⁻¹
					0.02 <i>pb</i> ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) <i>nb</i> ⁻¹	21 (25) nb ⁻¹

Year 3 (2025) :

Very large Au+Au heavy-ion set for jet and heavy flavor physics

141 B events recorded in total

IOWA STATE

SPHENIX

sPHENIX Probes : Jets and Photons

(left) Projected total yields for jets, photons and charged hadrons in 0-10% Au+Au events and p+p events (right) corresponding *R_{AA}* projections [BUP] SPH-TRG-2020-001

- \blacksquare 2023-2025 data taking will have kinematic reach out to \approx 70 GeV for jets, and \approx 50 GeV for hadrons and photons
- The kinematic reach will resolve varying theoretical prediction for R_{AA} at higher p_T .

Report from sPHENIX

sPHENIX Probes : Jet Correlations and Substructure

(left) Statistical projections for the jet-to-photon p_T balance for photons with $p_T > 30$ GeV (right) subjet splitting fraction for jets with $p_T > 40$ GeV (**BUP**] **SPH-TRG-2020-001**

- Large sample of physics objects (above a *p*_T threshold) will enable the study of jet internal structure and photon+jet correlations
- The large data set allows for highly differential high p_T observables

Report from sPHENIX

STATE

sPHENIX Probes : Upsilon Spectroscopy

[BUP] sPH-TRG-2020-001

Clear separation of Y states allows for comparison between RHIC and LHC measurements

STATE

ERSITY

Crucial measurement, since the temperature profiles from hydrodynamic calculations show important differences with collision energy

sPHENIX Probes : Upsilon Spectroscopy

- Clear separation of Y states allows for comparison between RHIC and LHC measurements
- Crucial measurement, since the temperature profiles from hydrodynamic calculations show important differences with collision energy

STATE ERSITY

Report from sPHENIX

sPHENIX Probes : Open Heavy Flavor

(left) Projected statistical uncertainties for nuclear modification factor R_{AA} measurements of non-prompt and prompt D^o as a function of p_T in 0-10% central Au+Au collision

(right) corresponding v_2 projections in 0-80% centrality $[BUP] \ sPH-TRG-2020-001$

 High precision and data rate will allow for studies of mass-dependent energy loss and collectivity in the quark-gluon plasma

Ejiro Umaka on behalf of sPHENIX Collaboration

Report from sPHENIX

sPHENIX Cold QCD Program

(left) Projected statistical uncertainties for the midrapidity direct photon TSSAs compared to theoretical calculations (right) corresponding D⁰ measurement [BUP] SPH-TRG-2020-001

The photon and D^o spin asymmetry measurements have deep connections to nucleon partonic structure

sPHENIX Cold QCD Program

(left) Projected statistical uncertainties for the midrapidity direct photon TSSAs compared to theoretical calculations (right) corresponding D⁰ measurement [BUP] SPH-TRG-2020-001

 Jet TSSA measurement at sPHENIX will be complementary to future jet TSSA measurement at the EIC, allowing for a fundamental test of QCD factorization in p+p and e+p interactions

Ejiro Umaka on behalf of sPHENIX Collaboration

Detector Construction Update

Ejiro Umaka on behalf of sPHENIX Collaboration

Report from sPHENIX

Virtual, June 8-11, 2021 16 / 23

1st sPHENIX component Installed in sPHENIX Hall, 5/27/21

Ejiro Umaka on behalf of sPHENIX Collaboration

Report from sPHENIX

1/4 of the sPHENIX cradle now mounted as of a few days ago

Ejiro Umaka on behalf of sPHENIX Collaboration

Report from sPHENIX

Construction will be complete at the end of the year!

MAN AND

107

.

P

sPHENIX will perform at :

High rate, large acceptance, precision tracking and dedicated EM and hadronic calorimeter systems

sPHENIX will perform at :

High rate, large acceptance, precision tracking and dedicated EM and hadronic calorimeter systems

sPHENIX will enable very high precision measurements of :

sPHENIX will perform at :

High rate, large acceptance, precision tracking and dedicated EM and hadronic calorimeter systems

sPHENIX will enable very high precision measurements of :

Jet correlations & substructure, open heavy flavor, Υ spectroscopy, at unprecedented kinematic range at RHIC

sPHENIX aims to meet science mission goal of :

Probing the microscopic nature of the quark-gluon plasma

sPHENIX will perform at :

High rate, large acceptance, precision tracking and dedicated EM and hadronic calorimeter systems

sPHENIX will enable very high precision measurements of :

Jet correlations & substructure, open heavy flavor, Υ spectroscopy, at unprecedented kinematic range at RHIC

sPHENIX aims to meet science mission goal of :

Probing the microscopic nature of the quark-gluon plasma

First data taking begins in 2 years !

sPHENIX will perform at :

High rate, large acceptance, precision tracking and dedicated EM and hadronic calorimeter systems

sPHENIX will enable very high precision measurements of :

Jet correlations & substructure, open heavy flavor, Υ spectroscopy, at unprecedented kinematic range at RHIC

sPHENIX aims to meet science mission goal of :

Probing the microscopic nature of the quark-gluon plasma

First data taking begins in 2 years !

Thank you!

