EXPERIMENTAL COLD QCD AT RHIC

11 JUNE 2021 | MARIA ŻUREK | ARGONNE NATIONAL LABORATORY

RHIC & AGS ANNUAL USERS' MEETING 2021
SPIN PHYSICS PROGRAM AT RHIC

Goals:

• Using spin as a unique probe to unravel the internal structure of the proton
• Understanding QCD processes in cold nuclear matter

Questions:

\[S = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_G \]

• How do **gluons** contribute to the **proton spin**?
• What is the landscape of the (un)polarized quark-sea in the nucleon?
• What do **transverse-spin phenomena** teach us about the structure of the nucleon and nucleus and properties of QCD?
• What is the **initial state in nuclear** collisions?

Probing the **cold nuclear matter** via **strong interactions** in pA and pp collisions

Cold-QCD Highlights: See talks on 06/08 by B. Mulilo (9:00 AM), H. Menjo (9:25), X. Chu (9:50 AM)

Future Cold-QCD prospects with pp and pA: See talks on 06/08 by J. Huang (10:55), T. Lin (11:20)
GLUON HELICITY
GLUON HELICITY

\[\bar{p} + \bar{p} \rightarrow \text{jet/dijet/hadrons} + X \]

- At RHIC energies: sensitivity to qg and gg – Access to \(\Delta g(x)/g(x) \)
- Cross-section measurement to support the NLO pQCD interpretation of asymmetries

\[A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum \Delta f_a \otimes \Delta f_b \otimes \Delta a_{LL} \otimes D}{\sum f_a \otimes f_b \otimes \hat{\sigma} \otimes D} \]

LO for illustration

STAR inclusive jet \(A_{\perp L} \) from 2009 data at \(\sqrt{s} = 200 \text{ GeV} \)
PRL 115 (2015) 9, 092002
Included in global pQCD analysis provided evidence for positive gluon polarization for \(x > 0.05 \) at \(Q^2 = 10 \text{ GeV}^2 \)

Low-x range
- Extend sensitivity to smaller \(x \):
 - Forward rapidity \(x_g \propto \exp(-y) \)
 - \(\sqrt{s} = 510 \text{ GeV} \) data \(x_g \propto 1/\sqrt{s} \)

High-x range
- Further precision from:
 - Jet and neutral pion probes
 - Complementary probes (dijets)
INCLUSIVE JETS AT 200 GEV
Towards higher precision at $x > 0.05$

New result on jet and dijet A_{LL} from STAR from 2015 data

- Consistent with 2009 data, which provided first evidence for **positive gluon polarization for $x > 0.05$**
- Twice larger figure-of-merit (L^4) with improved systematics
- Will significantly reduce uncertainty on $\Delta g(x)$ for $x > 0.05$ once included in global fits

The most precise dataset likely to conclude the 200 GeV longitudinal spin program with jets
DIJETS AT 200 GEV
Towards higher precision at x > 0.05

Dijets give stricter constraints to underlying partonic kinematics
- Better constraints on functional form of $\Delta g(x)$ - narrow ranges of initial state partonic momentum tested
- More-forward production - lower x (down to 0.01 with STAR Endcap PRD 98 (2018), 032011) x_2 – likely gluon, x_1 – likely quark
CENTRAL π, JETS, AND PHOTONS AT 510 GEV
Towards smaller x and complementary probes

Higher \sqrt{s} pushes sensitivity to lower x (down to ~ 0.004 with STAR Endcap dijets at 510 GeV)
- Consistent results from both energies and both experiments
- Pion A_{LL} ordering connected to the gluon polarization sign
- Direct photon sensitive to $gq \rightarrow \gamma q$ LO process; clean access to $\Delta g(x)$ (no hadronization)

- Further precision with jet A_{LL} from Run 2013 data at $\sqrt{s} = 510$ GeV - x 3.5 statistics w.r.t. Run 2012 and dijets with Endcap from Run 2015 - x 2 statistics w.r.t Run 2009

RHIC concluded the data taking with longitudinally polarized protons in 2015
The data are anticipated to provide the most precise insights in $\Delta g(x)$ well into the future
QUARK-SEA DISTRIBUTIONS
SEA-QUARK HELICITIES

Single spin asymmetry and cross sections for W production

\[A_{L}^{W^+}(y_W) \propto \frac{\Delta d(x_1) u(x_2) - \Delta u(x_1) \bar{d}(x_2)}{d(x_1) u(x_2) + u(x_1) \bar{d}(x_2)} \]

\[A_{L}^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1) d(x_2) - \Delta d(x_1) \bar{u}(x_2)}{\bar{u}(x_1) d(x_2) + d(x_1) \bar{u}(x_2)} \]

LO for illustration

Separation of quark flavor
- \(W^+(W^-) \): predominantly \(u(d) \) and \(\bar{d}(\bar{u}) \)

Maximal parity violation
- \(W \) couples to left-handed particles or right-handed antiparticles

The decay process is calculable
- Free from fragmentation function

Access both to sea and valence quarks

\(W^{+/-} \) and Z cross section
- Agreement between theory and experiment
- Support for the NLO pQCD interpretation of asymmetry measurements

Phys. Rev. D 103, 012001
QUARK HELICITIES

Single spin asymmetry for W production at STAR

- Full available data set analyzed 2011-2013 data (300 pb⁻¹) – most precise data to date
- First evidence for a polarized flavor asymmetry
- Significant preference for Δu over Δd
 → Opposite to the spin-averaged quark-sea distributions
- Evaluations from DSSV and NNPDF agree with data in sea and valence quark region
UNPOLARIZED SEA-QUARK DISTRIBUTIONS

Cross-section ratio for W production

Sensitivity to the unpolarized $\bar{d}(x)/\bar{u}(x)$ quark distribution

W*/W- cross section ratio at STAR complementary to the Drell-Yan data
- Data cover overlapping region of $0.1 < x < 0.3$, $|\eta_e| < 1$ at higher $Q^2 = M_W^2$
- Cross sections ratio measured vs the decay lepton η and the W rapidity (from recoil)

Will provide insights into unpolarized light quark distributions $\bar{d}(x)$ and $\bar{u}(x)$ at $x > 0.05$

Further opportunities with run 2022 at 510 GeV: x 2 statistics
SIVERS FUNCTION
ASYMMETRY FOR $W^+/-$ AND Z PRODUCTION

Sivers function - describes correlation between parton’s transverse momentum inside the proton with proton transverse spin (initial state TMD)

\[\langle \vec{S}_{\text{proton}} \cdot (\vec{p}_{\text{proton}} \times \vec{k}_T) \rangle \neq 0 \]

Test of nonuniversality of Sivers function: $\text{Sivers}_{\text{DIS}} = - \text{Sivers}_{\text{DY/W/Z}}$ and TMD evolution effects

- Improved uncertainties from run 2017 preliminary results
- Bury, Prokudin, and Vladimirov PRL 126, 112002 (2021) – extraction includes SIDIS, DY and 2011 STAR data with $N^3\text{LO}$ and NNLO accuracy of the TMD evolution assuming sign-change
- 2x more statistics from run 2022 at 510 GeV with STAR iTPC (expec. ~350 pb$^{-1}$)
ASYMMETRY FOR THE DIJET OPENING-ANGLE

Sivers function - describes correlation between parton’s transverse momentum inside the proton with proton transverse spin (initial state TMD)

\[
\langle \boldsymbol{S}_{\text{proton}} \cdot (\boldsymbol{p}_{\text{proton}} \times \boldsymbol{k}_{T}) \rangle \neq 0
\]

- Non-zero \(k_{T} \) leads to spin-dependent **tilt of dijet opening angle** in transverse plate
- Expect no effect on average: enhancing contribution of u or d quarks by **sorting jets by their net charge**
- Tilt unfolded for the \(k_{T} \) of individual partons
- \(k_{T} \) for d opposite in sign, twice as large as average \(k_{T} \) for u quarks
- Constraints for the Sivers function at a high \(Q^2 \) scale (\(Q^2 > 160 \text{ GeV}^2 \))
ASYMMETRY FOR DIRECT PHOTONS AND HEAVY FLAVOR ELECTRONS

Indirect constraint on the Sivers function via integral relationship with the Twist-3 trigluon correlator

- sPHENIX capabilities in mid-rapidity: direct photons and D⁰ meson asymmetries
- STAR capabilities with forward upgrade: jet, π⁰, charged hadrons, photons Aₐ: constraint on the evolution and flavor dependence of the Twist-3 ETQS function
TRANSVERSITY
TRANSVERSITY

- Net density of quarks with spin aligned with the transversely polarized nucleon (leading twist)
- Two asymmetries A_{UT} provide sensitivity at RHIC

Spin-dependent modulation of hadrons in jets

Collins function (TMD FF)
Correlation of transverse spin of fragmenting quark and transverse momentum kick given to fragmentation hadron

Di-hadron correlation measurements

“interference FF” (collinear framework)
Correlation of transverse spin of fragmenting quark and momentum cross-product of di-hadron pair
OVERLAP WITH KINEMATIC REACH OF EIC

Fixed-target DIS, RHIC-spin, and EIC are truly complementary

Transversity from the Collins and IFF
→ Study factorization breaking effects for TMD observables in hadronic collisions

Sivers and Collins effect at $\sqrt{s} = 200$ and 500 GeV
→ Important input to study evolution of TMDs and essential kinematic overlap in x-Q^2 with future EIC

- Forward jet and charged hadron capabilities at STAR in Run 22 → Probing transversity in valence region
- Increased statistics in mid-rapidity → STAR and sPHENIX in pp and pA runs in Run 24
GOING FORWARD
ORIGIN OF LARGE FORWARD A_N

- Measured small A_N for EM-jets and Collins asymmetry for π^0 within EM jets
- Weak dependence on the center-of-mass energy
- A_N for non-isolated π^0 and higher-multiplicity EM jets lower

STAR forward upgrade capabilities with jets and charged hadrons
- Study forward Sivers, Collins and Diffractive processes:
 → charged-hadron enhanced jets (prediction from Twist-3 formalism), hadron in jet Collins asymmetry, diffractive processes with rapidity gaps

Theory curves: J. Cammarota et al. PRD 102, 054002 (2020)
ORIGIN OF LARGE FORWARD A_N

Impact of forward EM jets A_N on u and d Sivers function

Forward EM jets A_N

STAR forward upgrade capabilities with jets and charged hadrons
- Study forward Sivers, Collins and Diffractive processes:
 - charged-hadron enhanced jets (prediction from Twist-3 formalism), hadron in jet Collins asymmetry, diffractive processes with rapidity gaps

06/11/2021 M. Żurek – Experimental Cold QCD at RHIC Page 21
NUCLEAR DEPENDENCE OF A_N

PHENIX charged hadron A_N

1.4 < η < 2.4
0.1 < x_F < 0.2, 1.8 < p_T < 7
- Noticeable A_N suppression in pA collisions

STAR π^0 A_N
2.6 < η < 4.0
0.2 < x_F < 0.7, 1.5 < p_T < 7
- No strong A dependence

- **Future data taking with** STAR with forward upgrade
 → Capability to measure A_N in the complementary region 2.5 < η < 4.0 for h^+ and h^-
 - sPHENIX to improve statistics in the region of 0.1 < x_F < 0.2

See also new results from PHENIX on very forward neutron A_N, PRD103, 032007 (2021)
DI-HADRON CORRELATIONS

Motivation: Access to **non-linear gluon dynamics** at small x (gluon saturation)
- Saturation scale Q_S: grows with A and decreases with x

Forward jet, photon, and charged hadron capabilities with STAR forward upgrade:
- Opportunity for di-h^\pm, photon-jet, photon-hadron and dijet correlation measurements in pp and pA

Forward jet, photon, and charged hadron capabilities with **STAR forward upgrade**:
- Opportunity for di-h^\pm, photon-jet, photon-hadron and dijet correlation measurements in pp and pA
RUN 2022

Program with p↑p↑ at 510 GeV with STAR forward upgrade and enhanced PID at mid-η

Forward jet capability and **charge-sign discrimination**: charged-particle tracking (p_T and sign)

- **Tracking**: Si disks + small Thin Gap Chambers
- **Calorimetry**: hadronic and electromagnetic
- **Access to highly asymmetric partonic collisions**: high x-quark and low-x gluon interactions

Large group of STAR collaborators actively engaged in all aspects of the project:
ACU, BNL, UCLA, UCR, UIC, Indiana University CEEM, UKU, OSU, Rutgers U., Temple U., Texas A&M U., Valparaiso U., Shandong U., NCKU, USTC

Project supported by National Science Foundation and Chinese Funds

(see T. Lin’s talk, 06/08/21, 11:20)
COLD QCD WITH sPHENIX AND STAR

Program with p^+p^+, p^+Au at 200 GeV (sPHENIX + STAR) in 2024
- Complementary to each other in the future RHIC measurements

Together with Run 2022 important to realize the scientific promise of future EIC:
- Overlap in kinematic coverage with EIC
- Establishing the validity and limits of factorization and universality

Cold QCD opportunities with sPHENIX
(see J. Huang’s talk, 06/08/21, 10:55)
→ Utilizing the jet, heavy flavor and direct photon strengths of the sPHENIX barrel to probe
- Sivers and Collins effect and
- Nuclear PDFs and FF in midrapidity

Capabilities of STAR with forward upgrade
(see T. Lin’s talk, 06/08/21, 11:20)
- Allows exploration of low-x → gluon saturation
- Nuclear effects in the initial and final state
- Combination of Run 22 results with similar data taken at 200 GeV
SUMMARY

RHIC - critical and complementary role in resolving the spin structure of the proton

RHIC-spin program has provided unique insight into:

- Constraints on the **polarized gluon distribution**
 - Evidence for the positive gluon polarization for $x > 0.05$
- The **polarized and unpolarized sea quark** distributions via W/Z production
 - Polarized sea quark shows significant preference for $\Delta \bar{u}$ over $\Delta \bar{d}$

- **Sivers’ function**
 - Initial transverse W-boson data that are consistent with the Sivers’ sign-change
 - 2022 with iTPC (STAR) (expected 350 pb^{-1})
 - Observation of non-zero Sivers effect in dijets
 - 2017 with higher \sqrt{s} and forward and mid-rapidity regions from 2022/2024
- **Twist-3 gluon dynamics with direct photon and HF**
 - 2024 sPHENX in mid-rapidity, 2022/2024 STAR forward rapidities for ETQS function

- **Transversity** through the **Collins and IFF asymmetry**
 - Non-zero asymmetries at mid-rapidity that are sensitive to quark-transversity at hard scales
 - 2017 ($x \times 12$ more data) and higher statistics and better PID in fwd and mid-rapidity in runs 2022/2024

Ongoing upgrades will provide unique physics opportunities in:

- Understanding the origin on **large forward A_N**
- Testing **TMD evolution**
- Constraining tensor charge through **transversity at high x**
- Understanding nature of **initial state** and **hadronization** in pA collisions