Direct Photon Production in Au+Au Collisions at 200GeV Beam Energy

Wenqing Fan
Thesis Advisor: Axel Drees
Why photons?

- Photons are a unique probe for QGP
 - “Color blind” (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal media emit radiation in the form of photons or low mass lepton pairs

Direct photon = Inclusive photon - decay photon
Why photons?

- Photons are a unique probe for QGP
 - “Color blind” (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal media emit radiation in the form of photons or low mass lepton pairs

Direct photon = Inclusive photon - decay photon

Estimate the prompt photons from p+ p baseline

Extract temperature from thermal photon yield
Direct photon puzzle

- Qualitatively: in agreement with thermal source
 - Large yield of low p_T direct photons
 - Large anisotropic emission
 - Universal scaling with $\alpha \sim 5/4$

- Quantitatively: in tension with current model predictions

What is the main source for low p_T direct photons?
Goal of this thesis work

- Using **2014 PHENIX Au+Au** data to study the direct photon with high statistical precision in more detail
 - Higher luminosity
 - More conversions at the PHENIX silicon vertex detector (VTX) \((X/X_0 \sim 14\%) \)

- Results on following slides are from my thesis, **publication in preparation**
Direct photons in Au+Au collisions

At high p_T, Au+Au data consistent with N_{coll} scaled $p+p \rightarrow$ the dominant photon source is hard scattering.

At low p_T, Au+Au data shows a clear enhancement wrt the prompt contribution below 3GeV.

At intermediate p_T (3-5 GeV), Au+Au data also shows an enhancement wrt the prompt contribution.
Closer look at “thermal” excess in Au+Au collisions

- Inverse slope (T_{eff}) changes towards higher p_T

![Graph showing inverse slope changes](image)

Au + Au → γ + X, $\sqrt{s_{NN}} = 200$ GeV, 20-40%

- PRC 91, 064904
- 2014 conversion method

$$T_{\text{eff}} = 261.92^{+7.04}_{-7.04} \text{ (stat)}^{+12.58}_{-7.42} \text{ (sys)} \text{ MeV}$$

$$T_{\text{eff}} = 352.74^{+14.86}_{-14.86} \text{ (stat)}^{+20.38}_{-29.62} \text{ (sys)} \text{ MeV}$$

A + A → γ + X

- Au + Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV
- Pb + Pb @ $\sqrt{s_{\text{NN}}} = 2760$ GeV

Low p_T range

Intermediate p_T range

- Fitting range $0.9 < p_T < 2.1$ GeV/c
- Fitting range $2.0 < p_T < 4.0$ GeV/c

More central collision
Higher beam energy
Heavier nuclei A
Consistent scaling behavior with previous A+A results

\[dN_\gamma / dy = A \times (dN_{ch}/d\eta)^\alpha \]
Direct photon scaling vs p_T

Run14 Au+Au @ 200GeV, $dN^{\text{dir}}/dy = A(dN_{\text{ch}}/dy)^{\alpha}$

- Hadron gas ($\alpha = 1.23$)
- QGP ($\alpha = 1.83$)

Centrality dependence (α) in tension with hydro model (including QGP+HG+prompt contribution)

No clear p_T dependence

$\eta/d_{ch} = A(dN_{\gamma}/dy)$

PRC 89, 044910 (2014)
PRL 123, 022301 (2018)

Direct photon scaling

low \rightarrow intermediate \rightarrow high

HG dominant \rightarrow QGP dominant? \rightarrow hard scattering dominant
Direct/Thermal photon photon puzzle — other photon sources?

- Significant intermediate p_T
- Large v_2
- Centrality dependence: $\alpha < 1$?

- Significant intermediate p_T (RHIC)
- Small-negative v_2
- Centrality dependence: $\propto N_{\text{coll}} (N_{\text{ch}}^{1.25})$ or stronger?

Diagram:
- Prompt photons
- Photons from strong B field
- Photons from hadronization
- Jets in-medium Bremsstrahlung
- Jet-plasma conversions
- Decay photons
- Significance intermediate p_T
- Small v_2
- Centrality dependence: ?
- Large low p_T yield
- Large v_2
- Centrality dependence similar to HG?