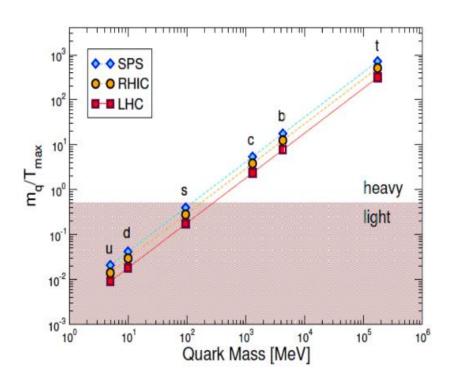
Heavy Flavour Dynamics in Heavy Ion Collisions: Anisotropic flows v_n and their Correlations to Bulk Dynamics and the Initial Field

Salvatore Plumari

Dipartimento di Fisica e Astronomia 'E. Majorana', Università degli Studi di Catania

INFN-LNS

in collaboration with


L. Oliva, M.L. Sambataro, Y. Sun, V. Minissale, S.K. Das, V. Greco

2021 RHIC/AGS Annual Users' Meeting 8-11 June 2021

Outline

- Introduction
- Heavy quarks dynamics in QGP within transport approach
- □ Initial state fluctuation → Event-Shape-Engineering
 - \square Anisotropic flows v_n and their correlations
- Impact of intense vorticity and initial ElectroMagnetic field on Heavy quarks dynamics:
 - sizeable v₁ for charm quarks (anti-charms)
- Conclusions

Basic scales of Heavy Quarks

- $m_{c,b} \gg \Lambda_{QCD}$ pQCD initial production
- m_{c,b} >> T_{RHIC,LHC} negligible thermal production
- $\tau_0 < 0.08 \text{ fm/c} << \tau_{QGP}$
- $\tau_{th} \approx \tau_{QGP} >> \tau_{g,q}$

They experience the full evolution of the QGP.

They carry more informations with respect to their light counterparts.

Relativistic Boltzmann eq. at finite η/s

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$$

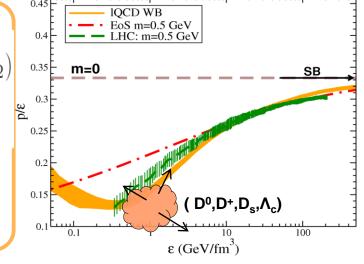
$$p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$$

Equivalent to viscous hydro η/s≈0.1

free-streaming

field interaction ε-3p≠0

collision term gauged to some η/s≠0


Heavy quark evolution

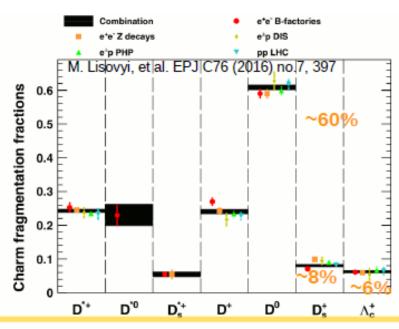
$$p^{\mu}\partial_{\mu}f_{Q}(x,p) = C[f_{q},f_{g},f_{Q}]$$

S. Plumari et al., J. Phys. Conf. Ser. 981 012017 (2018)

$$C[f] = \frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p'_1}{(2\pi)^3 2E'_1} \frac{d^3p'_2}{(2\pi)^3 2E'_2} (f'_1 f'_2 - f_1 f_2) \times |\mathcal{M}_{12 \to 1'2'}| (2\pi)^4 \delta^{(4)}(p'_1 + p'_2 - p_1 - p_2),$$

M scattering matrix by QPM model fit to IQCD thermodynamics

Fragmentation


$$\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$$
Fragmentation function

The distribution function is evaluated at the Fixed-Order plus Next-to-Leading-Log (FONLL) M. Cacciari, P. Nason, R. Vogt, PRL 95 (2005) 122001

We use the Peterson fragmentation function C. Peterson, D. Schalatter, I. Schmitt, P.M. Zerwas PRD 27 (1983) 105

$$D_{f \to h}(z) \propto \frac{1}{z \left[1 - \frac{1}{z} - \frac{\epsilon}{1 - z}\right]^2}$$

Recent update He-Rapp, PLB795(2019): Increase \approx 2 due to added Λ_c resonance not present in PDG, but predicted by RQM [assumed BR with Λ_c dominance]

* Fragmentation functions

$$\left(\frac{\Lambda_c^+}{D^0}\right)_{\substack{e^+e^-\\p,p}} \simeq 0.1 \qquad \left(\frac{D_s^+}{D^0}\right)_{\substack{e^+e^-\\p,p}} \simeq 0.13$$

* Thermal models about 2 times larger

A. Andronic et al., Phys. Lett. **B**571, 36 (2003)
I. Kuznetsova, J. Rafelski, EPJ C51, 113 (2007)

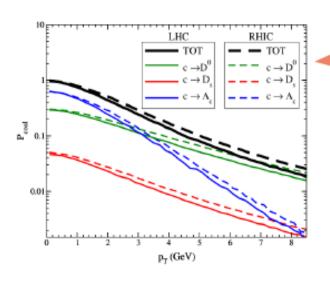
$$\left(\frac{\Lambda_c^+}{D^0}\right)_{\substack{e^+e^-\\p,p}} \simeq 0.25 - 0.30$$

Heavy flavour Hadronization: Coalescence

Statistical factor colour-spin-isospin Parton Distribution function

Hadron Wigner function

$$\frac{dN_{Hadron}}{d^{2}p_{T}} = g_{H} \int \prod_{i=1}^{n} p_{i} \cdot d\sigma_{i} \frac{d^{3}p_{i}}{(2\pi)^{3}} \left(f_{q}(x_{i}, p_{i}) f_{w}(x_{1}, ..., x_{n}; p_{1}, ..., p_{n}) \right) \delta(p_{T} - \sum_{i} p_{iT})$$

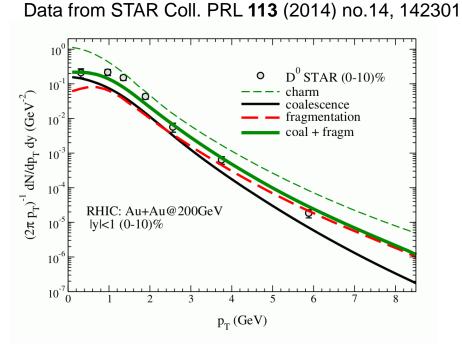

$$\prod_{i=1}^{n} p_i \cdot d \sigma_i \frac{d^3 p_i}{(2\pi)^3}$$

$$g(f_q(x_i,p_i))$$

$$f_{W}(x_{1},...,x_{n};p_{1},...,p_{n})$$

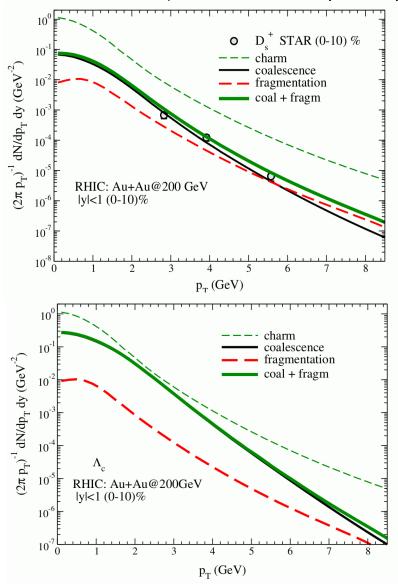
$$\delta(p_T - \sum_i p_{iT})$$

charm distribution function at midrapidity from parton simulations solving Boltzmann transport eq. that give good description of both R_{AA} and $V_2(p_T)$ from RHIC to LHC energies.


The width parameters σ in $f_w(...)$ fixed by the root-mean-square charge radius as predicted by quark models

C.-W. Hwang, EPJ C23, 585 (2002). C. Albertus et al., NPA 740, 333 (2004)

$$\langle r^2 \rangle_{D^*} = 0.184 \, \text{fm}^2 \quad \langle r^2 \rangle_{D_s^*} = 0.124 \, \text{fm}^2 \quad \langle r^2 \rangle_{\Lambda_c^*} = 0.152 \, \text{fm}^2$$


- Normalization in f_w(...) fixed by requiring that $P_{coal}=1$ for p=0
- The charm not "coalesces" undergo fragmentation: charm number conserved at each p_{τ}
- Is the same approach employed to predict Λ/K

RHIC: results

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

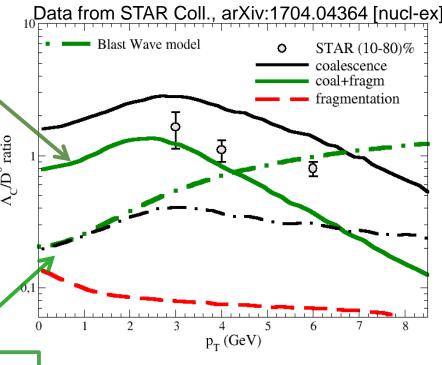
Data from STAR Coll., arXiv:1704.04364 [nucl-ex].

RHIC: Baryon/meson

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

Coalescence

Following: L.W.Chen, C.M. Ko, W. Liu, M. Nielsen, PRC 76, 014906 (2007).


K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017).

For hypersurface of proper time τ and non-relativistic

limit:

K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017). For hypersurface of proper time
$$\tau$$
 and non-relativistic mit: for $p_T << m$
$$\frac{\Lambda_c^+}{D^0} \propto \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D}\right) e^{-(m^\Lambda - m^D)/T_C} \tau \mu_2$$

$$\mu_2 = \frac{m_3(m_1 + m_2)}{m_3(m_2 + m_3)}$$
 Is the reduced mass of the

$$\mu_2 = \frac{m_3(m_1+m_2)}{m_1+m_2+m_3}$$
 Is the reduced mass of the baryon

Blast Wave model:

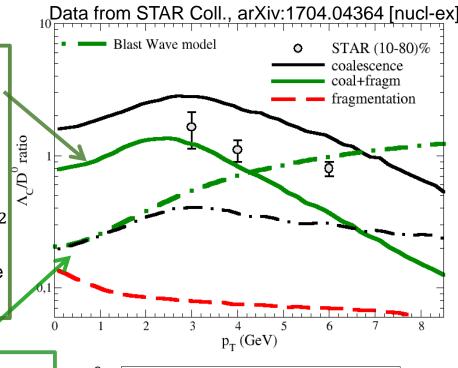
$$\begin{split} \frac{\Lambda_c^+}{D^0} &= \frac{g_\Lambda}{g_D} \frac{m_T^\Lambda}{m_T^D} \frac{K_1 \left(m_T^\Lambda / T_C \right)}{K_1 \left(m_T^D / T_C \right)} \\ \text{for } p_T &<< m \\ &\approx \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D} \right)^{1/2} e^{-(m^\Lambda - m^D) / T_C} \approx 0.17 \end{split}$$

RHIC: Baryon/meson

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

Coalescence

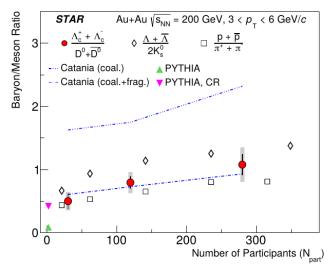
Following: L.W.Chen, C.M. Ko, W. Liu, M. Nielsen, PRC 76, 014906 (2007).


K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017).

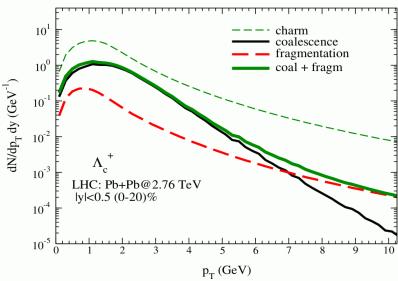
For hypersurface of proper time τ and non-relativistic

limit:

K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017). For hypersurface of proper time
$$\tau$$
 and non-relativistic limit:
$$for \, p_T << m \qquad \frac{\Lambda_c^+}{D^0} \propto \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D}\right) e^{-(m^\Lambda - m^D)/T_C} \tau \mu_2$$
 Is the reduced mass of the

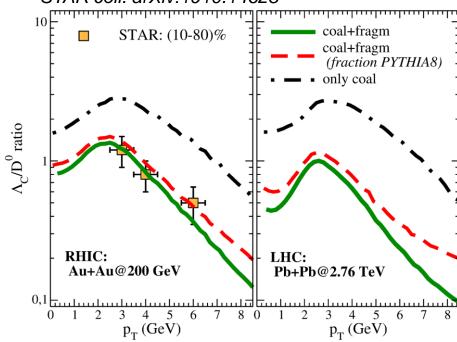

$$\mu_2 = \frac{m_3(m_1+m_2)}{m_1+m_2+m_3}$$
 Is the reduced mass of the baryon

Blast Wave model:


$$\frac{\Lambda_c^+}{D^0} = \frac{g_\Lambda}{g_D} \frac{m_T^\Lambda}{m_T^D} \frac{K_1(m_T^\Lambda/T_C)}{K_1(m_T^D/T_C)}$$

$$for \, \rho_T << m \qquad \approx \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D}\right)^{1/2} e^{-(m^\Lambda - m^D)/T_C} \approx 0.17$$

LHC: results



wave function widths σ_p of baryon and mesons

kept the same at RHIC and LHC!

STAR coll. arXiv:1910.14628

The Λ_c/D^0 ratio is smaller at LHC energies: fragmentation play a role at intermediate p_T

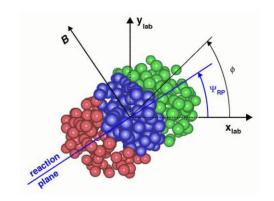
S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

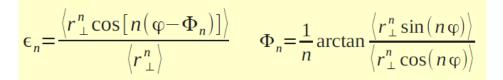
Extension to higher order anisotropic flows $v_n(p_T)$

n=3

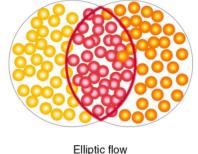
n=4

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})] \right\}$$

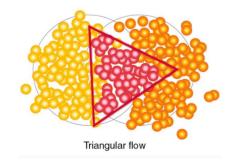

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$


Elliptic flow

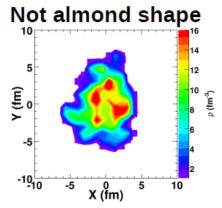
$$v_3 = \langle \cos[3(\varphi - \Psi_3)] \rangle$$


Triangular flow

n=2



$$r_{\perp} = \sqrt{x^2 + y^2}$$
, $\varphi = \arctan(y/x)$



n=5

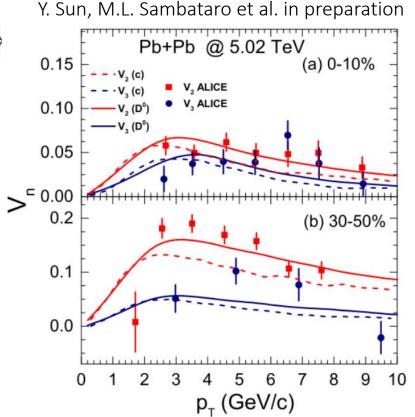
Azimuthal anisotropies depend on

- the interaction and coupling of heavy quarks with the medium;
- the initial conditions of the system, i.e.geometry of the collision;

Extension to higher order anisotropic flows $v_n(p_T)$

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})] \right\}$$

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$


Elliptic flow

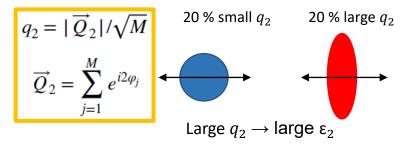
$$v_3 = \langle \cos[3(\varphi - \Psi_3)] \rangle$$

Triangular flow

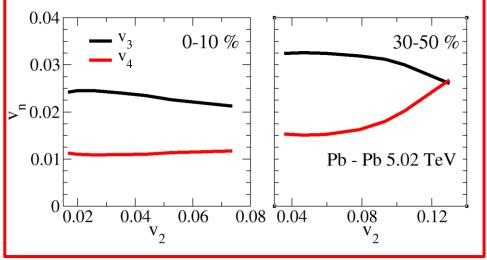
$$\epsilon_{n} = \frac{\left\langle r_{\perp}^{n} \cos\left[n(\varphi - \Phi_{n})\right]\right\rangle}{\left\langle r_{\perp}^{n}\right\rangle} \qquad \Phi_{n} = \frac{1}{n} \arctan\frac{\left\langle r_{\perp}^{n} \sin\left(n\varphi\right)\right\rangle}{\left\langle r_{\perp}^{n} \cos\left(n\varphi\right)\right\rangle}$$

$$r_{\perp} = \sqrt{x^{2} + y^{2}}, \qquad \varphi = \arctan\left(y/x\right)$$

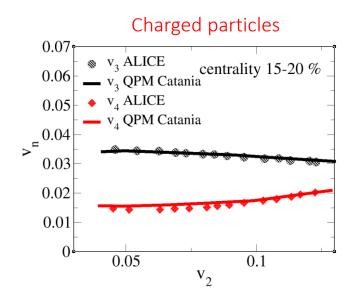
Data taken from ALICE collaboration: *Phys.Lett.B* 813 (2021) 136054

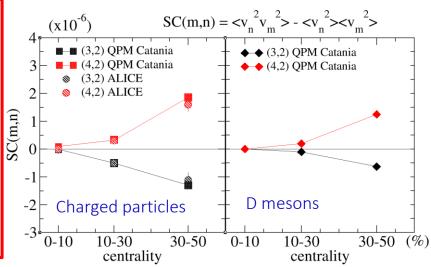

In the more peripheral collision (30-50 % centrality class) \rightarrow larger v_2 and comparable v_3

- $\triangleright v_2$ mainly from the geometry of overlapping region in larger centrality collision
- $\succ v_3$ driven by the fluctuation of the triangularity of overlap region at all centrality


Extension to higher order anisotropic flows $v_n(p_T)$

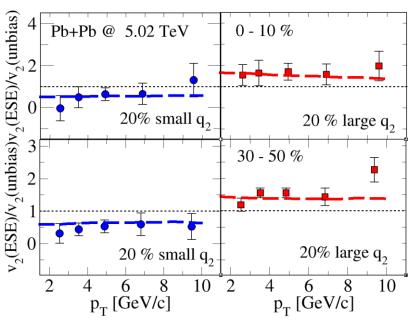
ESE tecnique and v_n correlations


Selection of events with the <u>same centrality</u> but <u>different initial geometry</u> on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .



Predictions for D mesons

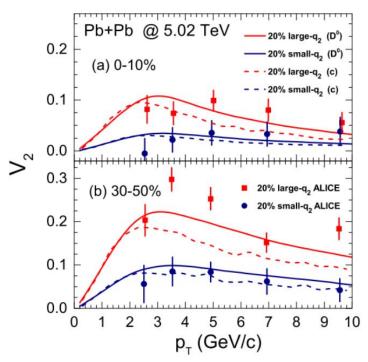
Y. Sun, M.L. Sambataro et al. in preparation

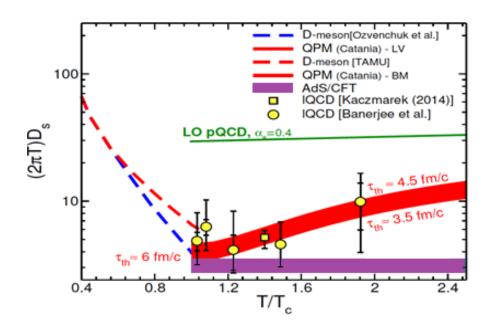

ESE: v_2 and spectra (20% small/large q_2)

Y. Sun, M.L. Sambataro et al. in preparation

q_2 selected $v_2(p_T)$

q_2 selected $v_2(p_T)$ ratio

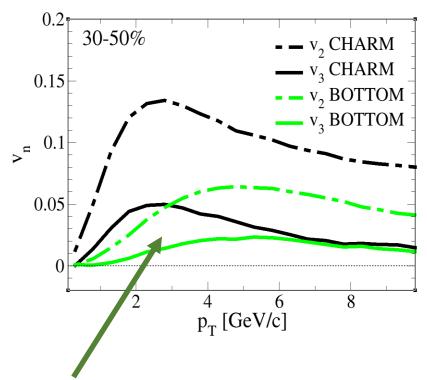

Data taken from ALICE collaboration: Phys.Lett.B 813 (2021) 136054


- $ightharpoonup v_2$ (large- q_2 /small- q_2) $\geqslant v_2$ (unbiased) of about 50% in both 0-10% and 30-50% centrality
- \triangleright The standard approach for R_{AA} and v_2 works for ESE observables

ESE: v_2 and spectra (20% small/large q_2)

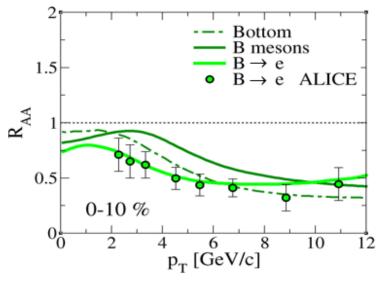
Y. Sun, M.L. Sambataro et al. in preparation

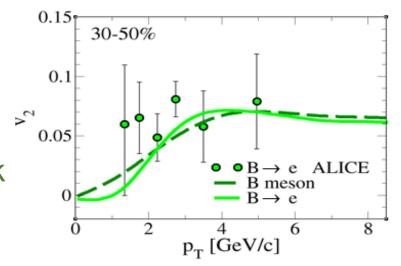
q_2 selected $v_2(p_T)$


Data taken from ALICE collaboration: Phys.Lett.B 813 (2021) 136054

- $ightharpoonup v_2$ (large- q_2 /small- q_2) \geqslant v_2 (unbiased) of about 50% in both 0-10% and 30-50% centrality
- \triangleright The standard approach for R_{AA} and v₂ works for ESE observables

Extension to bottom dynamics: R_{AA} and v_n


Prediction for B meson, electrons from semileptonic B


meson decay within a coal + fragm model

Non-zero v_2 , v_3 for bottom quark

Data taken from Arnaldi HP(2020)

M.L. Sambataro, V. Minissale et al., in preparation

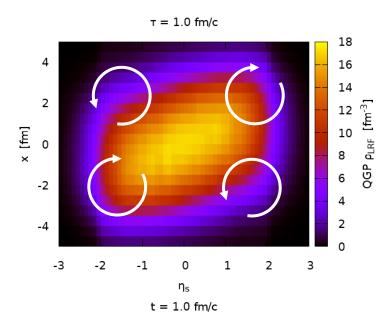
Intense fields and heavy flavor transport

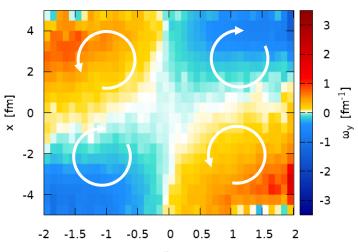
✓ INTENSE VORTICITY FROM THE HUGE ANGULAR MOMENTUM

- → heavy quark transport coefficients and D meson directed flow
- L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

✓ INTENSE ELECTROMAGNETIC FIELDS (EMF)

- → D meson directed flow
- S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina and V. Greco, PLB 768, 260 (2017)
- Y. Sun, S. Plumari and V. Greco, PLB 816, 136271 (2021)
- L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)
- Y. Sun, V. Greco and S. Plumari, arXiv:2104.03742 [nucl-th].


Intense fields and heavy flavor transport


- ✓ INTENSE VORTICITY FROM THE HUGE ANGULAR MOMENTUM
 - → heavy quark transport coefficients and D meson directed flow
 - L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

- ✓ INTENSE ELECTROMAGNETIC FIELDS (EMF)
 - → D meson directed flow
 - S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina and V. Greco, PLB 768, 260 (2017)
 - Y. Sun, S. Plumari and V. Greco, PLB 816, 136271 (2021)
 - L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)
 - Y. Sun, V. Greco and S. Plumari, arXiv:2104.03742 [nucl-th].

The vortical quark-gluon plasma

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

NONRELATIVISTIC VORTICITY

asymmetry in local participant density from forward and backward going nuclei

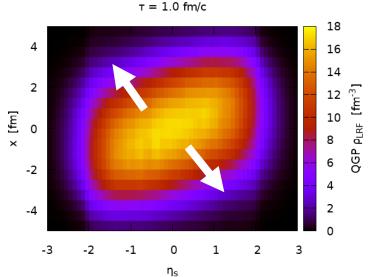
$$\rho(x_{\perp}, \eta_{s}) = \rho_{0} \frac{W(x_{\perp}, \eta_{s})}{W(0, 0)} \exp\left[-\frac{(|\eta_{s}| - \eta_{s0})^{2}}{2\sigma_{\eta}^{2}}\theta(|\eta_{s}| - \eta_{s0})\right]$$

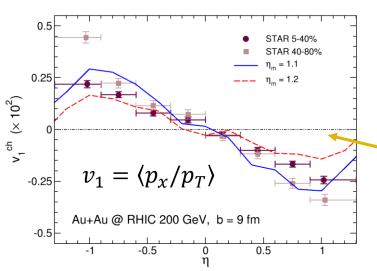
$$W(x_{\perp}, \eta_{s}) = 2 \left(N_{A}(x_{\perp})f_{-}(\eta_{s}) + N_{B}(x_{\perp})f_{+}(\eta_{s})\right)$$

$$f_{+}(\eta_{s}) = f_{-}(-\eta_{s}) = \begin{cases} 0 & \eta_{s} < -\eta_{m} \\ \frac{\eta_{s} + \eta_{m}}{2\eta_{m}} & -\eta_{m} \leq \eta_{s} \leq \eta_{m} \\ 1 & \eta_{s} > \eta_{m} \end{cases}$$

inspired to initial conditions of hydro simulations Bozek and Wyskiel, Phys. Rev. C 81, 054902 (2010)

measure of the local


The huge angular momentum and the tilt of the fireball induce in the QGP an intense <u>VORTICITY</u>


$$\omega = {\it V} \times v$$
 angular velocity of the fluid
$$\omega_{\it V} \approx 3~{\rm c/fm} \approx 10^{23}~{\rm s^{-1}}$$

Csernai, Magas and Wang, Phys. Rev. C 87, 034906 (2013) Deng and Huang, Phys. Rev. C 93, 064907 (2016) Jiang, Lin and Liao, Phys. Rev. C 94, 044910 (2016)

Charged Directed flow V₁

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

asymmetry in local participant density from forward and backward going nuclei

$$\rho(x_{\perp}, \eta_{s}) = \rho_{0} \frac{W(x_{\perp}, \eta_{s})}{W(0, 0)} \exp\left[-\frac{(|\eta_{s}| - \eta_{s0})^{2}}{2\sigma_{\eta}^{2}}\theta(|\eta_{s}| - \eta_{s0})\right]$$

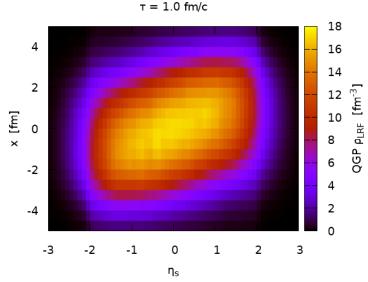
$$W(x_{\perp}, \eta_{s}) = 2\left(N_{A}(x_{\perp})f_{-}(\eta_{s}) + N_{B}(x_{\perp})f_{+}(\eta_{s})\right)$$

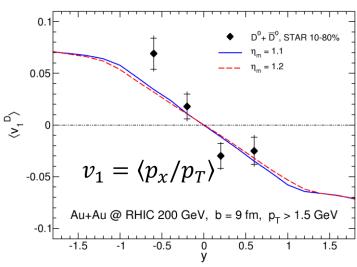
$$f_{+}(\eta_{s}) = f_{-}(-\eta_{s}) = \begin{cases} 0 & \eta_{s} < -\eta_{m} \\ \frac{\eta_{s}}{2\eta_{m}} & -\eta_{m} \leq \eta_{s} \leq \eta_{m} \\ 1 & \eta_{s} > \eta_{m} \end{cases}$$

inspired to initial conditions of hydro simulations Bozek and Wyskiel, Phys. Rev. C 81, 054902 (2010)

The huge angular momentum and the tilt of the fireball induce in the QGP a <u>DIRECTED FLOW</u>

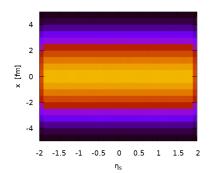
 $v_1 = 0$ if the fireball is not tilted


collective sidewards deflection of particles along the *x* direction


The tilt of the fireball induce a negative slope in the η dependence of the v_1 of bulk particles

DIRECTED FLOW OF CHARGED PARTICLES

D meson directed flow

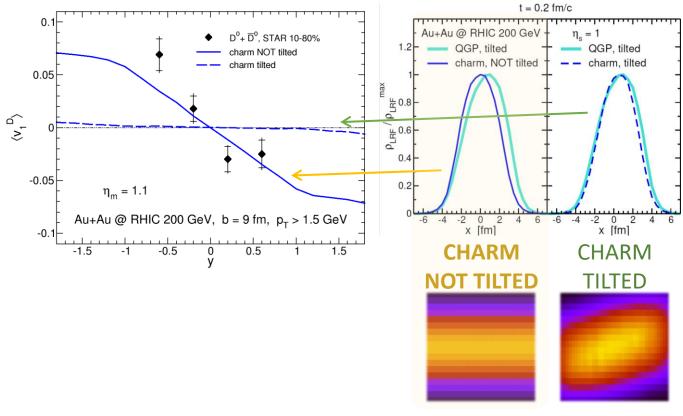

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

Are HEAVY QUARKS affected by the initial tilt of the fireball and the directed flow of bulk medium?

production points of HQs symmetric in the forward-backward hemispheres

The directed flow of neutral *D* mesons is 20-30 times larger than that of light hadrons

Chatterjee and Bozek, Phys. Rev. Lett. 120, 192301 (2018) STAR Collaboration, Phys. Rev. Lett. 123, 162301 (2019)

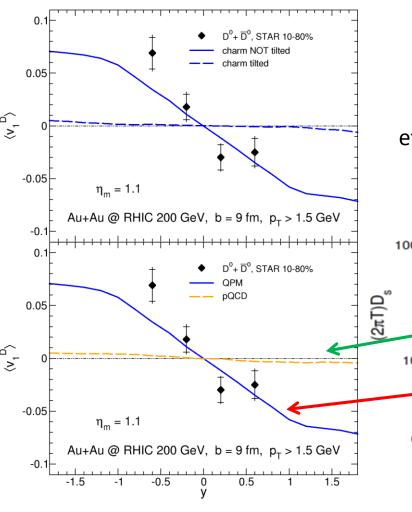

 v_1 (HQs) >> v_1 (QGP)

origin of the large directed flow of HQs different from the one of light particles

DIRECTED FLOW OF NEUTRAL D MESONS

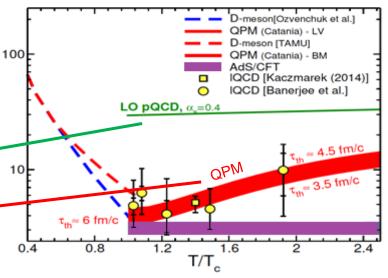
Origin of D meson directed flow

Oliva, Plumari and Greco, JHEP 05, 034 (2021)



longitudinal asymmetry leads to pressure push of the bulk on the HQs

QGP tilted in both cases


Origin of D meson directed flow

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

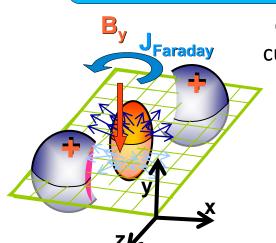
longitudinal asymmetry leads to pressure push of the bulk on the HQs

effective because the HQ interaction in QGP is largely non-perturbative

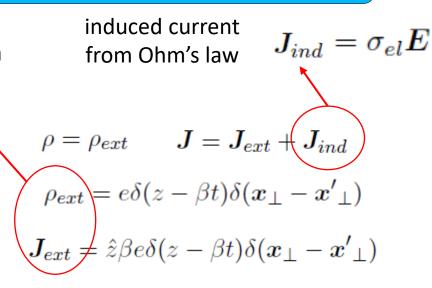
Greco, NPA 967, 200 (2017)

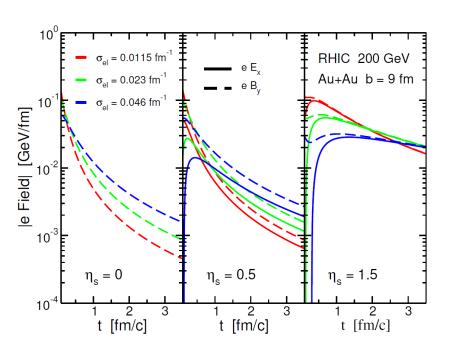
Similar conclusions with POWLANG approach Beraudo, De Pace, Monteno, Nardi and Prino, 2102.08064 strict connection between the magnitude of the D-meson v_1 and the HQ diffusion coefficient

Intense fields and heavy flavor transport


✓ INTENSE VORTICITY FROM THE HUGE ANGULAR MOMENTUM

- → heavy quark transport coefficients and D meson directed flow
- L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

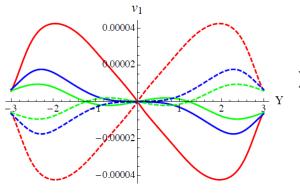

✓ INTENSE ELECTROMAGNETIC FIELDS (EMF)


- → D meson directed flow
- S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina and V. Greco, PLB 768, 260 (2017)
- Y. Sun, S. Plumari and V. Greco, PLB 816, 136271 (2021)
- L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)
- Y. Sun, V. Greco and S. Plumari, arXiv:2104.03742 [nucl-th].

Electromagnetic fields in HICs

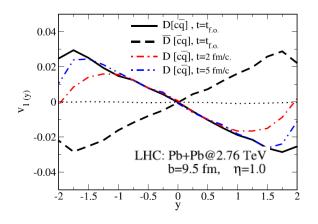
external charge and current produced by a point-like charge in longitudinal motion

Maxwell equations for the EMF can be solved analytically considering a medium with constant electric conductivity


Tuchin, Adv. High Energy Phys. 2013, 1 (2013) Gursoy, Kharzeev, Rajagopal, Phys. Rev. C 89, 054905 (2014)

We solve the Boltzmann eq. with EMF interaction term

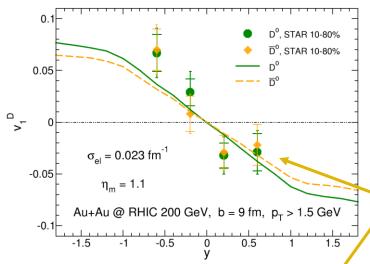
$$p^{\mu}\partial_{\mu}f(x,p) + qF_{ext}^{\mu\nu}p_{\nu}\partial_{\mu}^{p}f(x,p) = \mathcal{C}[f]$$


Oliva, Plumari and Greco, JHEP 05, 034 (2021)

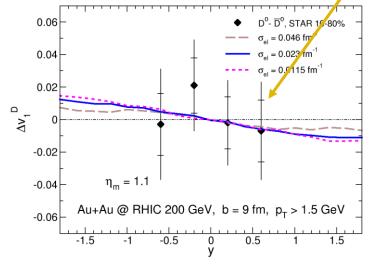
EMF and directed flow splitting

The huge EMF induce a splitting in the DIRECTED FLOW of particles with the same mass and opposite charge

difference in the v₁ of light hadrons in AA: O(10⁻⁴-10⁻³) Gursoy, Kharzeev and Rajagopal, Phys. Rev. C 89, 054905 (2014) Toneev, Voronyuk, Kolomeitsev and Cassing, Phys. Rev. C 95, 034911 (2017)


Das, Plumari, Chatterjee, Alam, Scardina and Greco, Phys. Lett. B 768, 260 (2017)
Chatterjee and Bozek, Phys. Lett. B 798, 134955 (2019)

reviews


Oliva, Eur. Phys. J. A 56, 255 (2020) Dubla, Gursoy and Snellings, Mod. Phys. Lett. A 35, 2050324 (2020)

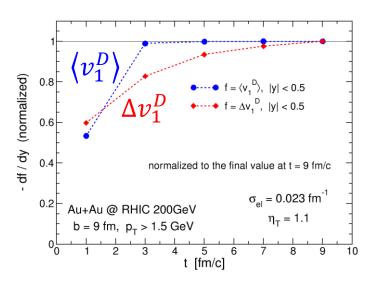
Directed flow in A+A at RHIC energy

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

Exp. data: STAR Coll., PRL. 123 (2019) 162301

DIRECTED FLOW OF NEUTRAL D MESONS

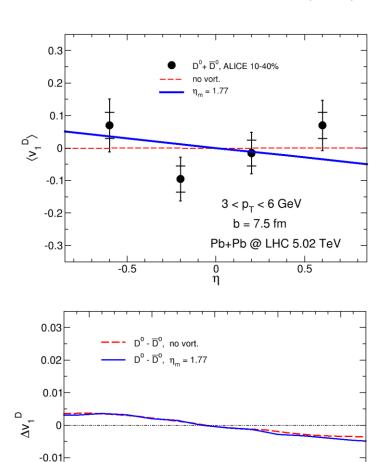
$$\Delta v_1^D = v_1(D^0) - v_1(\overline{D}{}^0)$$


The electromagnetic fields induce a large splitting in the directed flow of HEAVY QUARKS

$$v_1$$
 (HQ) - v_1 (QGP)

charm quarks are more sensitive to the EMF due to the early production

exp. Δv_1^D still consistent with zero due to the large errors



 v_1^D more sensitive to the early QGP evolution when T is higher, while v_2^D probes more $T \sim T_c$ \rightarrow include v_1^D in Bayesian fits

Directed flow in A+A at LHC energy

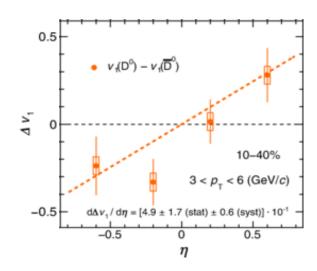
Oliva, Plumari and Greco, JHEP 05, 034 (2021)

 $3 < p_T < 6 \text{ GeV}$

b = 7.5 fm Pb+Pb @ LHC 5.02 TeV

DIRECTED FLOW OF NEUTRAL D MESONS

-0.5

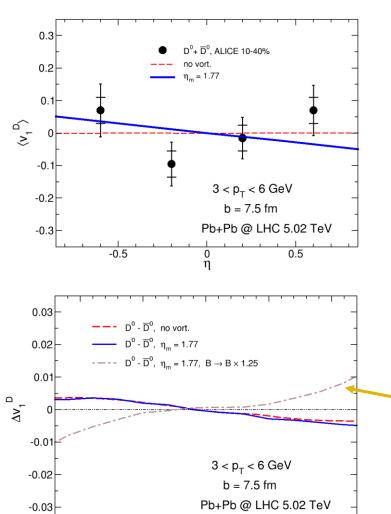

-0.02

-0.03

$$\Delta v_1^D = v_1(D^0) - v_1(\overline{D}{}^0)$$

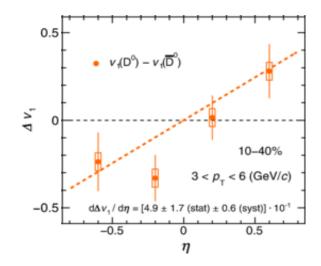
the slope of the combined v_1 of D^0 and \overline{D}^0 indicated by ALICE data is smaller than the one observed at RHIC and is consistent with zero

ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)


 $\Delta v_1^D(LHC)$ \approx $\Delta v_1^D(RHIC)$

the Δv_1 of D^0 and \overline{D}^0 measured by ALICE has opposite sign and magnitude ~50 times larger

if the v_1 splitting of neutral D mesons is confirmed to be of electromagnetic origin it is a proof of QGP formation


Directed flow in A+A at LHC energy

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

the slope of the combined v_1 of D^0 and \overline{D}^0 indicated by ALICE data is smaller than the one observed at RHIC and is consistent with zero

ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)

 $\Delta v_1^D(LHC)$ \approx $\Delta v_1^D(RHIC)$

positive slope rising by hand the value of the magnetic field

if the v_1 splitting of neutral D mesons is confirmed to be of electromagnetic origin it is a proof of QGP formation

DIRECTED FLOW OF NEUTRAL D MESONS

-0.5

$$\Delta v_1^D = v_1(D^0) - v_1(\overline{D}{}^0)$$

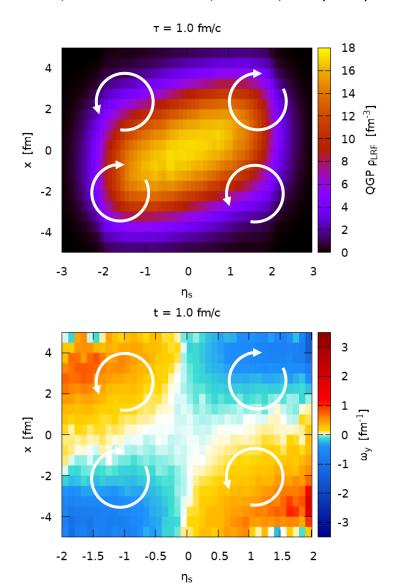
Conclusions

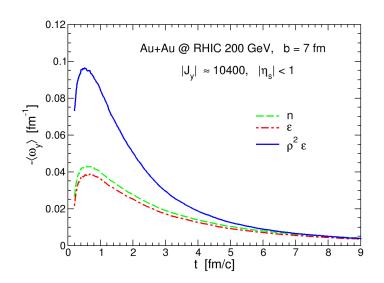
Spatial diffusion coefficient $D_S(T)$ that reproduces D meson R_{AA} and v_2 gives correct predictions for v_3 and q_2 selected anisotropic flow/spectra.

Prediction for significant $v_n - v_m$ correlation of hard particles, similar correlation between v_n of soft and hard particles.

New perspectives: B meson v_3 and impact of Λ_B/B^0 on B meson R_{AA} .

STRONG FIELDS IN ULTRARELATIVISTIC COLLISIONS


- intense vorticity induced by the huge angular momentum
- intense electromagnetic fields


Among the many interesting effects these intense fields have an impact on transport coefficients and observables of heavy-flavor particles.

- \checkmark The very large v_1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium.
- \checkmark The v_1 splitting of neutral D mesons is well described at RHIC energy but still a challenge at LHC

The vortical quark-gluon plasma

Oliva, Plumari and Greco, JHEP 05, 034 (2021)

$$\langle \omega_y \rangle (\mathbf{x}, t) = \frac{\int d^3 x \, w(\mathbf{x}, t) \omega_y(\mathbf{x}, t)}{\int d^3 x \, w(\mathbf{x}, t)}$$

$$w(\mathbf{x}, t) = \text{weigthing function}$$

$$n(\mathbf{x}, t), \varepsilon(\mathbf{x}, t), \rho^2(\mathbf{x}) \varepsilon(\mathbf{x}, t)$$

Csernai, Magas and Wang, Phys. Rev. C 87, 034906 (2013) Deng and Huang, Phys. Rev. C 93, 064907 (2016) Jiang, Lin and Liao, Phys. Rev. C 94, 044910 (2016)

Heavy flavour (charm): Resonance decay

In our calculations we take into account main hadronic channels, including the ground states and the first excited states for D and Λ_c

MESONS

$$D^+$$
 ($I=1/2, J=0$)

$$D^0$$
 ($l=1/2, l=0$)

$$\mathbf{D_s}^+$$
 ($I=0, J=0$)

Resonances

$$D^{*+}$$
 ($l=1/2, J=1$) $\rightarrow D^0 \pi^+ B.R. 68\%$
 $D^+ X B.R. 32\%$

$$D^{*0} (l=1/2, J=1)$$
 $\rightarrow D^0 \pi^0$ B.R. 62%
 $D^0 \gamma$ B.R. 38%

$$\mathbf{D_s}^{*+}$$
 (I=0,J=1) $\rightarrow \mathbf{D_s}^{+} \mathbf{X}$ B.R. 100%

$$D_{s0}^{*+}$$
 (I=0,J=0) $\rightarrow D_{s}^{+}$ X B.R. 100%

Statistical factor

$$\frac{\left[(2J+1)(2I+1) \right]_{H*}}{\left[(2J+1)(2I+1) \right]_{H}} \left(\frac{m_{H*}}{m_{H}} \right)^{3/2} e^{-(E_{H*}-E_{H})/T}$$

BARYONS

$$\Lambda_c^+$$
 (I=0, J=1/2)

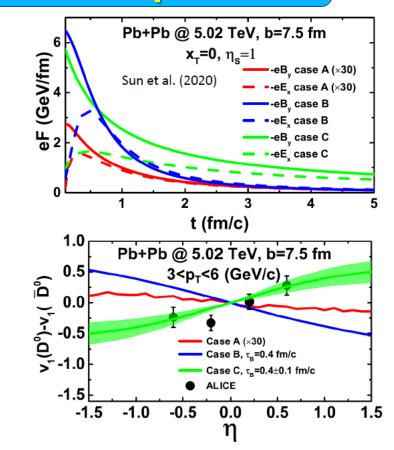
Resonances

$$\Lambda_c^+(2595) (l=0, l=1/2) \rightarrow \Lambda_c^+ B.R. 100\%$$

$$\Lambda_c^+$$
(2625) ($I=0, J=3/2$) $\longrightarrow \Lambda_c^+$ B.R. 100%

$$\Sigma_c^+$$
(2455) ($l=1, J=1/2$) $\longrightarrow \Lambda_c^+\pi$ B.R. 100%

$$\Sigma_c^+(2520) (l=1, J=3/2) \rightarrow \Lambda_c^+ \pi \ B.R. \ 100\%$$


Directed flow of charm and leptons

Sun, Plumari and Greco, Phys. Lett. B 816, 136271 (2021)

- riangle Analytic solution of EMF with constant σ_{el} case A
- * Magnetic field parametrization between in-vacuum and in-medium decay: $B(\tau) = B_0/[1 + (\tau/\tau_B)^n]$ case B n=2 case C n=1

Electric field from Faraday law

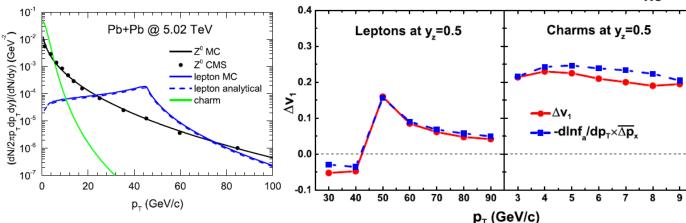
case C reproduces the ALICE data for the Δv_1 (D^0 , \overline{D}^0) but it is really a slow time decay of B

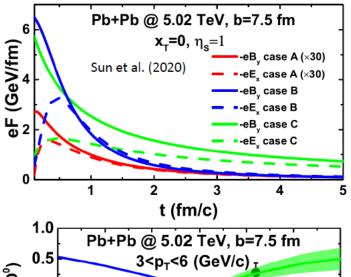
Directed flow of charm and leptons

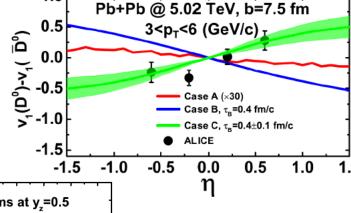
Sun, Plumari and Greco, Phys. Lett. B 816, 136271 (2021)

- riangle Analytic solution of EMF with constant σ_{el} case A
- * Magnetic field parametrization between in-vacuum and in-medium decay: $B(\tau) = B_0/[1 + (\tau/\tau_B)^n]$ case B n=2 case C n=1

Electric field from Faraday law


case C reproduces the ALICE data for the Δv_1 (D^0, \overline{D}^0) but it is really a slow time decay of B


Probing the EMF with leptons from Z⁰ decay


charged leptons interact only electromagnetically

$$au_{
m decay}({
m Z}^0)pprox au_{
m form}({
m c}) \ pprox 0.08 \ {
m fm}/c$$

$$v_1(p_T, y) \approx \frac{\overline{\Delta p}_x(p_T, y)}{2} \frac{-\partial \ln f_a}{\partial p_T}$$

 Δv_1 of leptons from Z^0 decay can help to clarify the electromagnetic origin of Δv_1 of neutral D mesons