

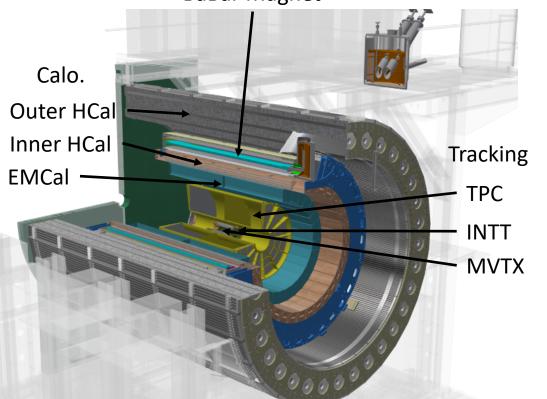
Heavy Flavor at sPHENIX

Cameron Dean, on behalf of the sPHENIX collaboration

9th June 2021

RHIC/AGS Annual Users' Meeting

The path to HF physics



- The four questions to getting physics results at a detector:
- 1. What features of your detector enable your physics?
- 2. How much data will be available?
- 3. What physics questions will you aim to answer?
- 4. Is everything in place to allow you to answer this?

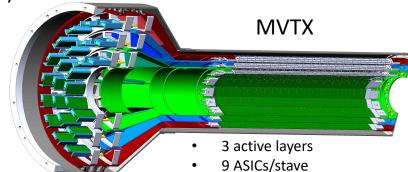
sPHENIX Overview

BaBar Magnet

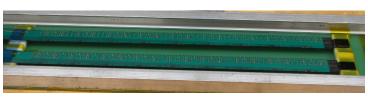
First run year	2023	
Trigger Rate [kHz]	15	
Magnetic Field [T]	1.4	
First active point [cm]	2.5	
Outer radius [cm]	270	
$ \eta $	€1.1	
$ z_{vtx} $ [cm]	10	
N(AuAu) collisions*	1.43x10 ¹¹	

* In 3 years of running

Unlocking HF at sPHENIX

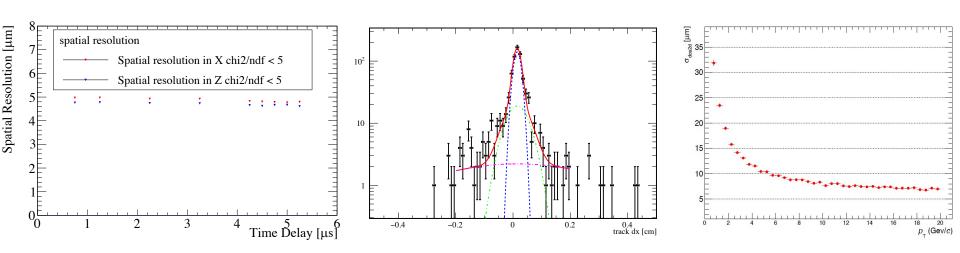

27 cm active length/stave

 Tracking currently consists of 3 sub-detectors; Pixel Vertex Detector (MVTX), Intermediate Silicon Tracker (INTT), Time Projection Chamber (TPC)


The Maps VerTeX detector

- Comprises of 3 layers of monolithic active pixel sensors using the ALICE ALPIDE
- The front-end readout uses the ALICE Readout Unit
- The back-end uses the ATLAS FELIX

ALPIDE thickness [μm]	50
Pixel size [µm] / matrix	29 x 27 / 1024 x 512
Technology	180nm CMOS
Power Consumption [mW/cm ²]	40 (mean), 300 (peak)
Stave Material Budget	0.3% X ₀
ТоТ	A few μs (tunable)
XZ spatial resolution [μm]	< 6



MVTX staves

Unlocking HF at sPHENIX

Left – MVTX spatial resolution as a function of trigger delay Middle – MVTX track resolution from cosmics Right – sPHENIX DCA_{xy} resolution (simulation)

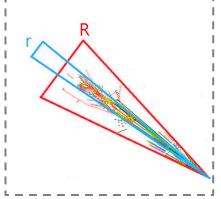
LHC vs RHIC

sPHENIX Run Plan

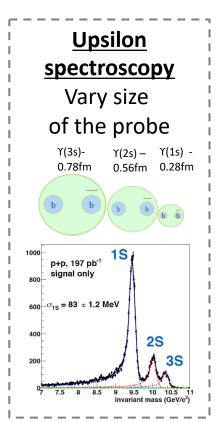
[sPH-TRG-2021-001]

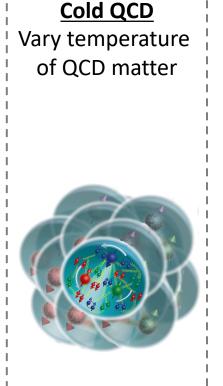
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \mathrm{nb}^{-1}$	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					$4.5 (6.2) \text{ pb}^{-1} [10\%\text{-}str]$	
2024	<i>p</i> [↑] +Au	200	-	5	$0.003 \ \mathrm{pb^{-1}} \ [5 \ \mathrm{kHz}]$	$0.11 \ \mathrm{pb^{-1}}$
					$0.01~{ m pb^{-1}}~[10\%\mbox{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb^{-1}	21 (25) nb ⁻¹

Wednesday, June 9, 2021


Heavy Flavor at sPHENIX

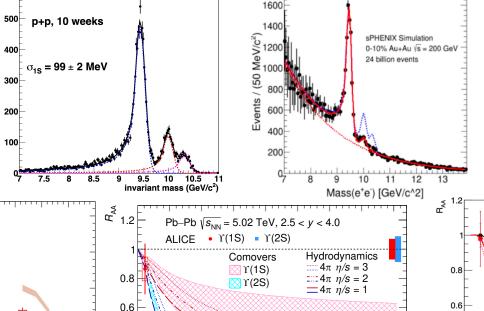
Core Physics Program



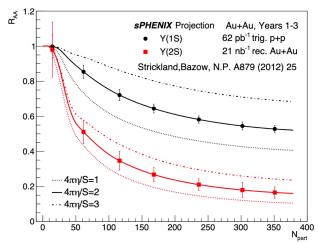

Jet correlation & substructure

Vary momentum/ angular size of probe

Parton energy loss Vary mass/ momentum of probe u,d,s b


Upsilon spectroscopy

0.4


0.2

ALI-PUB-483046

[PLB 806 (2020) 135486] [arXiv:2011.05758]

Heavy Flavor at sPHENIX

400

150

ALICE, p-Pb $\sqrt{s_{NN}}$ = 8.16 TeV

B.R. systematic uncertainty not shown

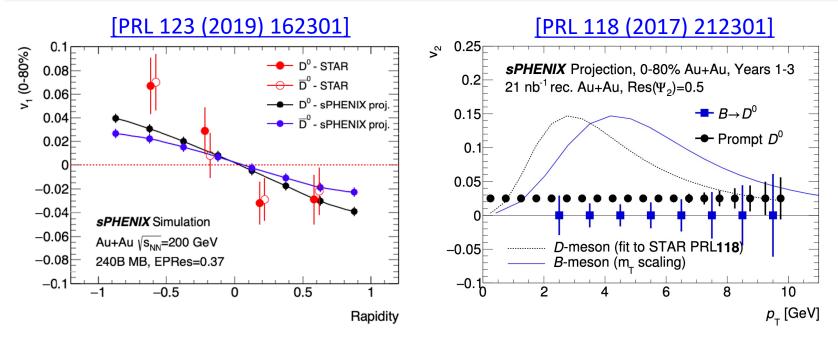
 $A_{Pb} \times d\sigma_{pp}^{\Upsilon(2S)}/dy_{cms}$ $A_{Pb} \times d\sigma_{pp}^{\Upsilon(3S)}/dy_{cms}$

 Υ , p_{τ} < 15 GeV/c

• Y(1S)

■ Y(2S)

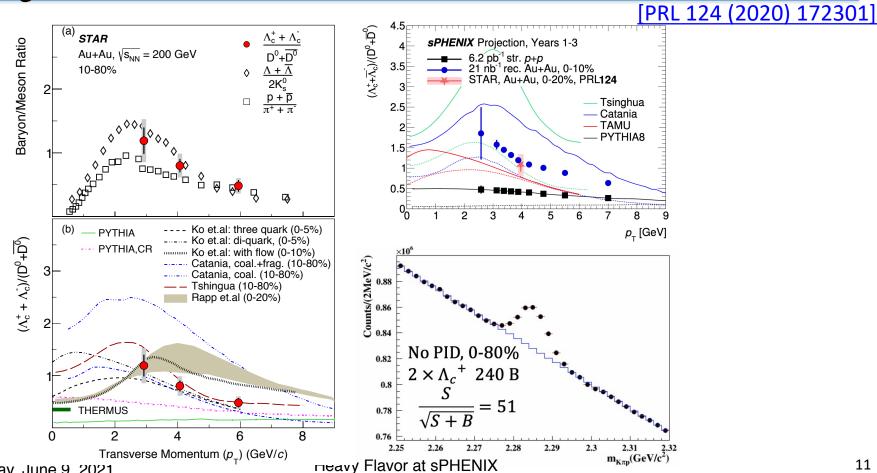
o Y (3S)


 $d\sigma/dy_{cms}$ (µb)

15

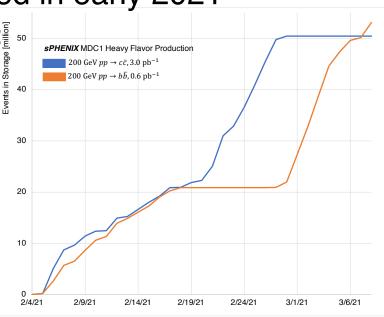
10

$D^0 v_1$ and v_2



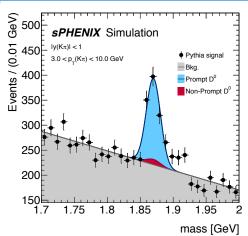
- Prediction that transient mag. field can influence v_1
- This effect is odd under charge-conjugation, resulting in splitting
- D^0 is <u>complicated</u>, requires good production knowledge

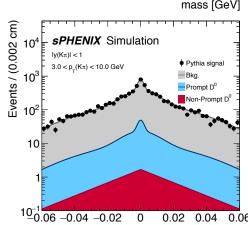
Λ_c^+ coalescence?


Marching to data-taking

- sPHENIX data taking commences in 2023
- We want to know day-one capabilities and be ready to go

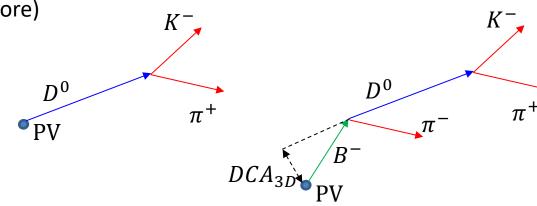
Large simulation campaign performed in early 2021


- What is our throughput and footprint 50
 - How do we co-ordinate analyses
 - What can we do on day-one
- HF sample consists of:
 - 50M $c\overline{c}$ events (3 days of pp data)
 - 50M $b\overline{b}$ events (3 years of pp data)
 - 50M min-bias events (pending)



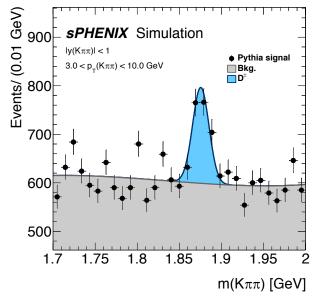
$D^0 \rightarrow K^- \pi^+$

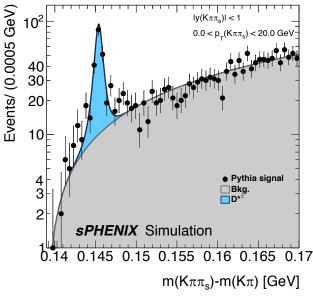
[sPH-HF-2021-001]



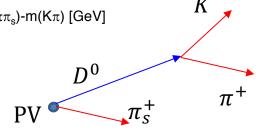
Wednesday, June 9, 2021

 DCA_{T} [cm]


- Simulation campaign allows for good tests of:
- . Pre-existing infrastructure
- 2. New packages
- Integration of external packages (ACTS from ATLAS and KFParticle from CBM)
- Prompt/non-prompt separation performed by kinematic reconstruction of b-hadrons or DCA measurements (and more)

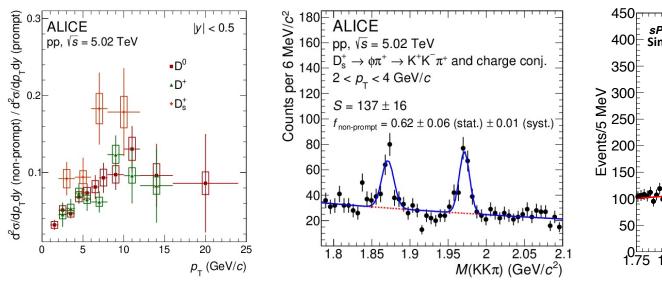


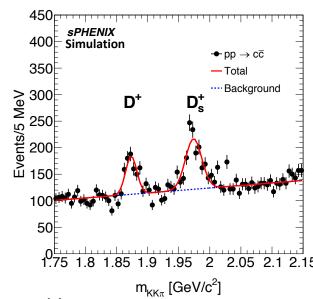
$D^{*+} \to D^0 (\to K^- \pi^+) \pi_S^+$



[sPH-HF-2021-001]

- D*+ decays promptly
- Requires good handle on PV, SV and tracking
- In PDG: $m(K\pi\pi_s) m(K\pi) = 145.426(2)$
- This channel fully defines D^0 flavor at production




$D_{(s)}^{+} \to K^{+}K^{-}\pi^{+}$

[sPH-HF-2021-001]

[JHEP 2105 (2021) 220]

Left - non-prompt/prompt production cross-sections as measured by ALICE Middle - $K^+K^-\pi^+$ invariant mass spectrum as seen in ALICE data Right - $K^+K^-\pi^+$ invariant mass spectrum as seen in sPHENIX simulations

Conclusions

- sPHENIX's design enables precision physics with b-hadrons at RHIC
- The beam delivered by RHIC will give large samples of heavy flavor particles for study
 - Bean Use Proposal has been submitted and we're listening to RHIC for any developments
- Our physics goals are well understood
 - Large statistics will greatly reduce statistical uncertainties
 - Lower pT reach (compared to LHC) will help probe new regions
- The collaboration are working hard to prepare for day-one