Using Machine Learning for Jet Measurements

Hannah Bossi (Yale University)
RHIC/AGS User’s Meeting
June 9th, 2021 (Remote)
Outline

What is ML and why is it useful for jets?

How is ML currently being used for jet measurements?

Ongoing challenges

Highlighting the future along the way!

This is a brief and biased overview! Many great conferences and workshops dedicated to this topic! For example, check out ML4jets!
What is Machine Learning?

ML is a subset of artificial intelligence (AI) in which algorithms can be used to imitate human learning, i.e. gradually improving accuracy over time.

Supervised Learning

- Algorithm learns from a labeled set of “true values”.
- Driven by the Task

Unsupervised Learning

- Algorithm finds structure in the data without knowing the desired outcome.
- Driven by the Data

Reinforcement Learning

- Algorithm learns in a reward based system to determine a series of actions.
- Driven by the Reward
Different algorithms for different problems!

(Shallow or Deep) Neural Networks

Convolutional Neural Networks (CNNs)

Generative Adversarial Networks (GANs)

Generative Network

Generated Sample

“Real” Sample

Discriminative Network

Update Network

Binary Classification: Is the sample real or fake?
Neural Networks

Flow of information happens between nodes.

Connections between nodes have weights which reflect the relative importance of different features.

In training we seek to learn the set of weights which minimize the total error of the network.
Different algorithms for different problems!

(Shallow or Deep) Neural Networks → Great for making predictions!

Convolutional Neural Networks (CNNs)

Generative Adversarial Networks (GANs)

Generative Network

Updated

Discriminative Network

Updated

Binary Classification: Is the sample real or fake?

Generated Sample

“Real” Sample

RHIC/AGS Users’ Meeting

Hannah Bossi (hannah.bossi@yale.edu)
Key component of a CNN is the **convolution layer**, which (with the help of a filter) will determine if a feature/pattern is present.
Different algorithms for different problems!

(Shallow or Deep) Neural Networks → Great for making predictions!

Convolutional Neural Networks (CNNs) → Great for image processing!

Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)

Two networks compete with one another in a game.

The generative network seeks to fool the discriminative network.

The discriminative network seeks to find the real sample from the generated samples.

Indirect training → generative network never sees the true distribution!
Different algorithms for different problems!

(Shallow or Deep) Neural Networks → Great for making predictions!

Convolutional Neural Networks (CNNs) → Great for image processing!

Generative Adversarial Networks (GANs) → powerful tool for generating samples!

Hannah Bossi (hannah.bossi@yale.edu)

RHIC/AGS Users’ Meeting
Goal of HEP measurements: To extract relevant physics information from available data!

Conventional approach: Use a series of boolean decisions motivated by physics or experimental constraints to make a selection then perform a statistical analysis on selected data.

Optimal decision difficult to derive from expert knowledge alone! Employ algorithms that utilize multiple variables simultaneously → inspired countless ML applications! (Living Review)
Limitations of ML

ML is not a magic fix!

- Put garbage in, get garbage out!
- ML cannot replace domain knowledge.
- ML is not a causation tool.
- Model should be generalizable (i.e. should perform well on unseen data).

Don’t want to be finding cloudy days when you should be finding tanks!
Jets are experimentally and theoretically complex multi-dimensional objects sensitive to many physics scales! → *Talk today will be from the perspective of jets in heavy-ions (HIs) where that is especially true!*

Good candidate for ML!
Outline

What is ML and why is it useful for jets?

How is ML currently being used for jet measurements?

Ongoing challenges
Different representations of jets

Optimal choice depends on the problem! (May be a combination of these!)

Jets as Images

Advantage: powerful tools available for image classification with ML!

arXiv: 1150.05190

Jets as a collection

Ex: declustering history, ordering of constituent p_T

Jets as a single object

Ex: Jet mass, radial moment, other jet shapes…
ML background estimator

Use machine learning (ML) to correct the jet for the large uncorrelated background in heavy-ion collisions!

Conventional approach: Apply a minimum p_T requirement on the leading track of the jet, correct the jet for the background with a pedestal subtraction.

ML approach: Use ML to construct the mapping between measured and corrected jet without a leading track bias.

Jet Properties
(Including constituent properties)

ML

Corrected Jet p_T

Unfold for fluctuations and detector effects

Hannah Bossi
Process

Training (PYTHIA fragmentation)

Train on “hybrid event” created by embedding PYTHIA jets into Pb-Pb Background

Key is that this background is realistic.

Shallow neural network

Testing

Apply ML estimator to hybrid events not used in training.

Do we get back the signal we put in?
Testing performance and potential bias

Are we getting closer to the “truth”?

Residual fluctuations significantly reduced!

Learning on constituents introduces a bias towards PYTHIA fragmentation!

Modify PYTHIA jets to change the fragmentation.

Training on constituents introduces a bias towards PYTHIA fragmentation!

Modify PYTHIA jets to change the fragmentation.

Residual fluctuations significantly reduced!

Train on the modified toy model and apply to data; measure bias.

Hannah Bossi
RHIC/AGS Users’ Meeting
Applying ML to data

Future: Apply similar techniques to other variables such as jet substructure!

ML extends measurements lower in p_T with reduced systematic uncertainties!

Useful to go to low p_T for kinematic overlap with RHIC!

Method is relatively robust to the explored biases!
ML approach: Use low-level jet parameters such as constituents, secondary vertices, track impact parameters etc. Learn from simulation in a supervised approach.

Conventional approach: Apply cuts on the properties of the displaced vertices.

HF Jets have....

large impact parameter of tracks

displaced secondary vertices
Heavy Flavor Tagging

Many ongoing experimental efforts showing nice improvement, focus on one CMS application to data using a deep neural network!

- Lower the curve, the better the performance
- Performance tends to improve with the size of training data

Future: Extend to p-Pb and Pb—Pb data!

Hannah Bossi (hannah.bossi@yale.edu)
OmniFold: Simultaneous Unfolding of All Observables

Purpose of Unfolding: Correct for detector effects and background fluctuations.

Conventional Approach: Use an unfolding procedure on a binned distribution and repeat for each desired observable!

ML Approach: Use ML to calculate weighting factors and unfold the phase space all at once, before the choice of binning or observable!

Really beneficial to…

- have an unbinned result!
- unfold with more dimensions which can correct for more complex effects.
 (Ex: Two jets with different substructures acquire same mass.)

arXiv: 1911.09107
Applying OmniFold to Data

Two applications to data!

ALEPH Archived Data (Thrust)

H1 Archived Data (Jet p_T)

Future: This is just the beginning! Hopefully many more applications to data!
Quark vs. Gluon Jets with ML

Long-standing effort starting around 1991!

Quark and gluon jets have different color factors and substructure!

We will focus on an effort in HI collisions!

Train using jet images in JEWEL!

Quark Jets

Gluon Jets

Use jet images with deep CNNs (DCNNs) to discriminate q/g.

Train using jet images in JEWEL!

(Supervised Learning)
Quark vs. Gluon Jets with ML

The performance worsens for Pb—Pb, due to the large UE.

Quark and gluon discrimination is a difficult and ongoing effort in HIs!

Future: Apply these methods to data in pp and Pb—Pb!
Deep Learning Jet Modifications

Use supervised learning on jet images with a CNN to perform the regression task of predicting the energy loss ratio in HI collisions (hybrid model).

\[\chi_{jh} = \frac{E_f^h}{E_i^h} \]

Shows good performance!

Very useful to separate and study quenched vs. unquenched jets as well as extracting the initial energy of the jet.

Future: Apply these methods to different models & variables, improve performance.
Could we use ML to directly access some of these underlying physics mechanisms?

“Data”-based learning complements simulation-based inference.

~ Given an answer
~ “White Box” ML
~ Underlying physics
~ Domain knowledge
~ “Black Box” ML
~ Answer

This is a long term effort!
Learning from data is difficult due to systematic experimental biases.

Helpful in understanding uncertainties or shortcomings of models!
Proof of Concept

Extract info from the network in white-box ML.

This is done by splitting the GAN into two components.

1) Time independent learns the z, ϕ

2) Time dependent learns the θ

Was able to reproduce AP splitting function.

Future: Can we use ML to learn physics from data?
Outline

- What is ML and why is it useful for jets?
- How is ML currently being used for jet measurements?
- Ongoing challenges
Ongoing Challenges

How do we quantify uncertainty?

How can we construct more interpretable models?

Do we need to standardize ML applications across experiments?

Many future and ongoing efforts to address these challenges!

Hannah Bossi (hannah.bossi@yale.edu)
Summary and Conclusions

Machine learning is a great tool for both understanding jet physics and making jet measurements, especially in heavy-ions!

Despite many great developments, still ongoing challenges → especially for applying ML to data!

Coming years are an exciting time for ML + jets → lots of uncharted phase space and opportunities to get involved!
Interested in ML? Here’s where to start!

Resources Hub For Machine Learning

Here is a collection of resources that I've found helpful in order to learn about machine learning and explore its applications for jet measurements! Feel free to distribute this guide to anyone who may be able to benefit from it! If there are any resources that you would like to see included in this list, email me at hannah.bossi@yale.edu and I will happily add them! Enjoy! ~ Hannah

Resources to Learn About ML in General
- Overview Websites
- Conferences/Meetings

Resources to Learn About ML Applications in Jet Physics
- Overview Websites
- Papers
- Conferences/Meetings

Resource guide available HERE!

Includes resources useful in learning about ML in general and also about ML for jet physics.

Thanks!!
Backup
Technical Details of the ML

Regression task where the regression target is the detector level jet p_T.

Here we are prioritizing a simple model!

Training sample 10%, testing sample 90%.

Implemented in scikit-learn. Default parameters used unless otherwise specified.

Shallow Neural Network
- Shallow, 3 layers with [100, 100, 50] nodes
- ADAM optimizer, stochastic gradient descent algorithm.
- Nodes/neurons activated by a ReLU activation function.

Linear Regression
- Normalization set to true by default.

Random Forest
- Ensemble of 30 decision trees.
- Maximum number of features set to 15.
Features for training

Ask ourselves two questions

How important is the feature to the model? → Feature Scores
Higher the feature score, more often variable is used in training.

How correlated is the feature with other features?

Iteratively remove unimportant or highly correlated features!

<table>
<thead>
<tr>
<th>Feature</th>
<th>Score</th>
<th>Feature</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet p_T (no corr.)</td>
<td>0.1355</td>
<td>$p^1_{T, const}$</td>
<td>0.0012</td>
</tr>
<tr>
<td>Jet mass</td>
<td>0.0007</td>
<td>$p^2_{T, const}$</td>
<td>0.0039</td>
</tr>
<tr>
<td>Jet Area</td>
<td>0.0005</td>
<td>$p^3_{T, const}$</td>
<td>0.0015</td>
</tr>
<tr>
<td>Jet p_T (area based corr.)</td>
<td>0.7876</td>
<td>$p^4_{T, const}$</td>
<td>0.0011</td>
</tr>
<tr>
<td>LeSub</td>
<td>0.0004</td>
<td>$p^5_{T, const}$</td>
<td>0.0009</td>
</tr>
<tr>
<td>Radial moment</td>
<td>0.0005</td>
<td>$p^6_{T, const}$</td>
<td>0.0009</td>
</tr>
<tr>
<td>Momentum dispersion</td>
<td>0.0007</td>
<td>$p^7_{T, const}$</td>
<td>0.0008</td>
</tr>
<tr>
<td>Number of constituents</td>
<td>0.0008</td>
<td>$p^8_{T, const}$</td>
<td>0.0007</td>
</tr>
<tr>
<td>Mean of constituent p_T s</td>
<td>0.0585</td>
<td>$p^9_{T, const}$</td>
<td>0.0006</td>
</tr>
<tr>
<td>Median of Constituent p_T s</td>
<td>0.0023</td>
<td>$p^{10}_{T, const}$</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Hannah Bossi

RHIC/AGS Users’ Meeting
Toy model studies

We study a toy model with three different ways to alter constituents of the jet, changing the fragmentation.

Use prior knowledge of behavior at intermediate p_T to create a variation in the fragmentation!
Modification to the fragmentation function

To toy model modifications indeed modify the fragmentation, some modifications are more extreme than others.

8 leading particles are what we chose to train on.
Intro to Random Forest

Random forests are composed of decision trees.

Decision trees are a set of rules organized in a tree structure.

Each node is a rule which subdivides the dataset into two or more parts (think 20 questions).

Output of the random forest is a combination of the output of each of the decision trees.

In training, the algorithm sets up the rules of each decision tree.
Intro to Linear Regression

Linear regression predicts the value of a **dependent variable** based on a given **independent variable** (feature x_1 with a given weight w_1).

$$y = b + w_1 x_1$$

The example at the right is a simplified view in reality we have multiple features each having a separate weight.

$$y = b + w_1 x_1 + w_2 x_2 + w_3 x_3 \ldots \ldots$$

Training determines the optimal weight for each feature.
Learning on constituents introduces a fragmentation bias.

We learn on a PYTHIA fragmentation.

We know that fragmentation in heavy-ion collisions is modified by the presence of the medium.

We want to investigate how this impacts the final result we get with ML!
Deep Learning Jet Modifications

Ex: Groomed jet radius

Small R_g (Collimated) Large R_g (wide)

Unquenched jets \neq jets in vacuum \rightarrow selection bias!

Jets that fall into the “unquenched class” tend to be narrower than average jet population in vacuum.

Future: Apply these methods to different models & variables, improve performance.

Hannah Bossi (hannah.bossi@yale.edu) RHIC/AGS Users’ Meeting

ML is a cool tool to begin to think about selection biases and its impact on how we see quenching!