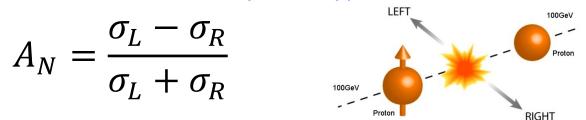
Recent Highlights from the PHENIX Cold-QCD Physics Program 2021 (Spin Workshop)

Benard Mulilo for the PH*ENIX Collaboration

Korea University

RIKEN

University of Zambia


2021 RHIC/AGS Annual Users Meeting (AUM)

June 8, 2021

Transverse Single Spin and Longitudinal Double Helicity Asymmetries for various Particle Species

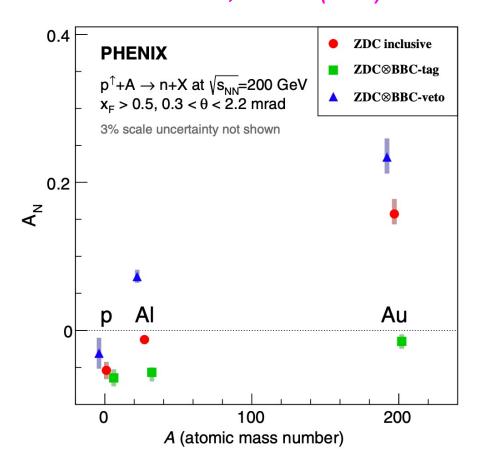
Transverse single spin asymmetry (A_N) is quantified by counts on either side of the polarized protongoing direction (i.e. measure azimuthal asymmetry).

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

 $A'_{N}s$ of various particles: neutrons, pions, eta mesons, electrons and photons have been studied.

Longitudinal double helicity asymmetry (A_{LL}):

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

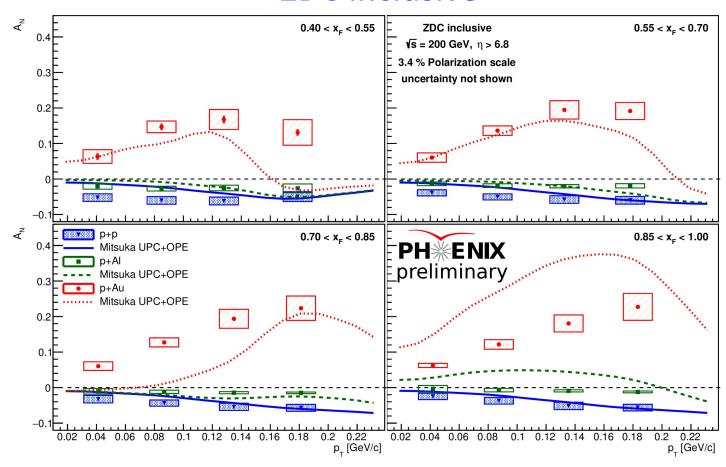


Longitudinal double helicity asymmetry of γ^{dir} and jet results have also been obtained.

These studies are vital in understanding particle production mechanisms and the proton spin puzzle.

Forward Neutron A_N : Strong Nuclear Dependence in $\mathbf{p}^\uparrow + \mathbf{A}$ Collisions at $\sqrt{\mathbf{s}_{\mathrm{NN}}} = 200$ GeV (2015 Data)

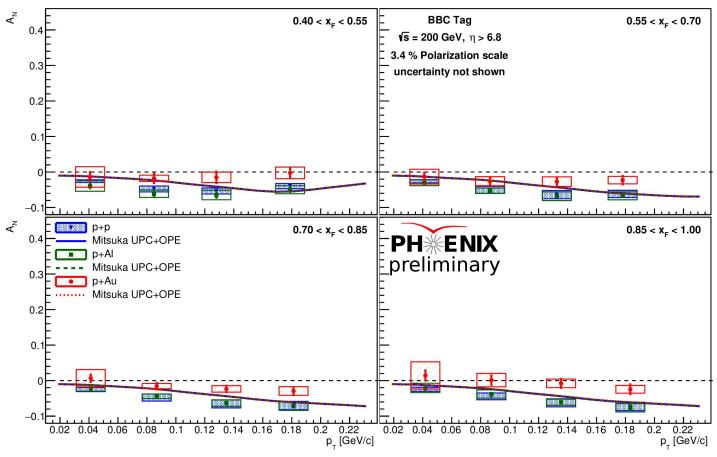
PRL 120, 022001 (2018)



- Neutron A_N in pA for A=1 (p), 27 (Al) and 197 (Au) for ZDC inclusive, ZDC \otimes BBC-tag and ZDC \otimes BBC-veto triggered samples.
- Strong nuclear dependence of asymmetries observed in pA contrary to pp expectation. This was quite surprising.

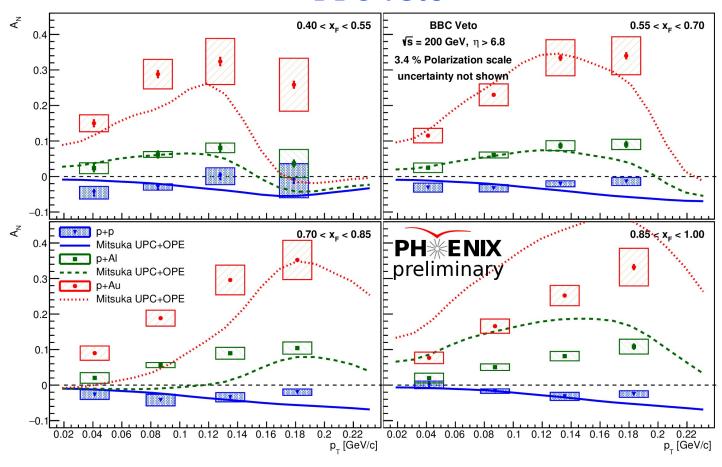
• Motivated further study to understand explicit p_T and x_F dependence of these asymmetries by invoking unfolding.

Detector Correlation and p_T dependent forward Neutron A_N in $\mathbf{p}^{\uparrow} + \mathbf{p}$, $\mathbf{p}^{\uparrow} + \mathbf{Al}$, $\mathbf{p}^{\uparrow} + \mathbf{Au}$ Collisions at $\sqrt{s} = 200$ GeV (2015 Data)


ZDC inclusive

Inclusive neutrons display very different A_N behavior likely from the interplay between hadronic and UPC contributions.

Detector Correlation and p_T dependent forward Neutron A_N in $\mathbf{p}^{\uparrow} + \mathbf{p}$, $\mathbf{p}^{\uparrow} + \mathbf{Al}$, $\mathbf{p}^{\uparrow} + \mathbf{Au}$ Collisions at $\sqrt{s} = 200$ GeV (2015 Data)

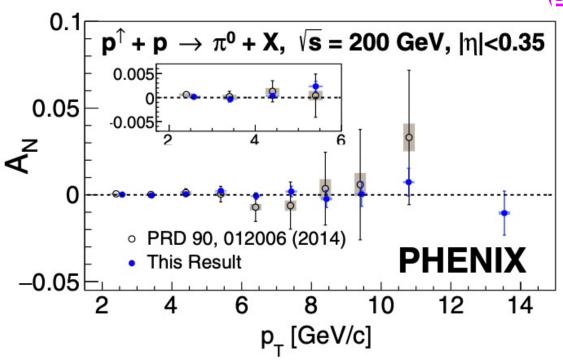

BBC tag

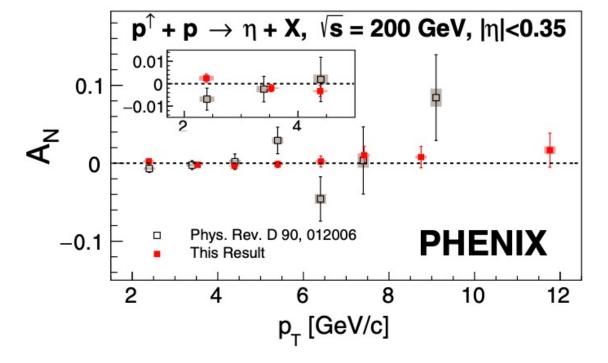
BBC tagging enhances hadronic contributions resulting in asymmetries that are mostly negative for all three collision species.

Detector Correlation and p_T dependent forward Neutron A_N in $\mathbf{p}^{\uparrow} + \mathbf{p}$, $\mathbf{p}^{\uparrow} + \mathbf{Al}$, $\mathbf{p}^{\uparrow} + \mathbf{Au}$ Collisions at $\sqrt{s} = 200$ GeV (2015 Data)

BBC veto

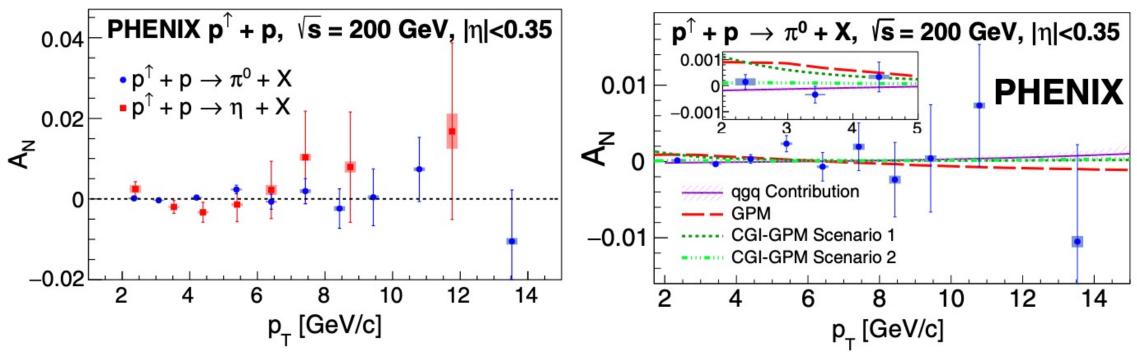
In BBC veto, UPC asymmetry contribution dominates over hadronic resulting in large and now positive asymmetries in pA.


Recent Highlights from the PHENIX Cold-QCD Physics Program 2021 (Spin Workshop)


Transverse single-spin asymmetries of midrapidity $m{\pi^0}$ and $m{\eta}$ mesons in $m{p}^\uparrow+m{p}$ collisions at $\sqrt{s} = 200$ GeV (2015 Data)

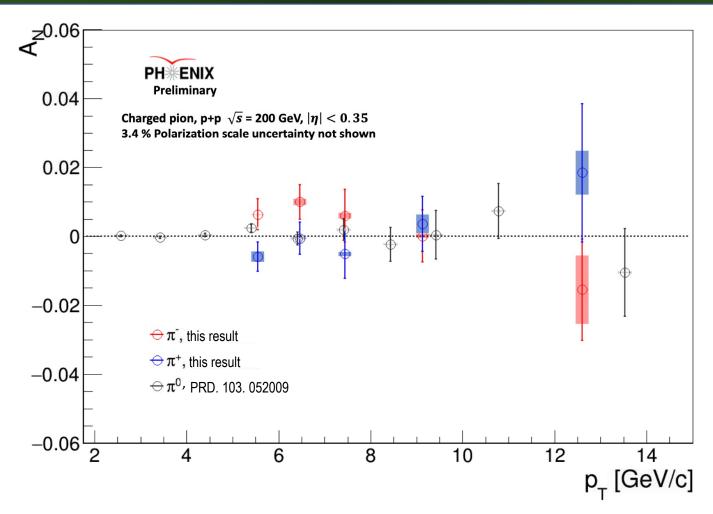
TSSA of π^0 measured at $|\eta| < 0.35$ in $p^{\uparrow} + p$ collisions at $\sqrt{s} = 200$ GeV.

TSSA of η mesons measured at $|\eta| < 0.35$ in $p^{\uparrow} + p$ collisions at $\sqrt{s} = 200$ GeV.


(PRD.103.052009)

Transverse Single Spin Asymmetries of Midrapidity π^0 and η Mesons in $p^\uparrow + p$ Collisions at $\sqrt{s} = 200$ GeV (2015 Data)

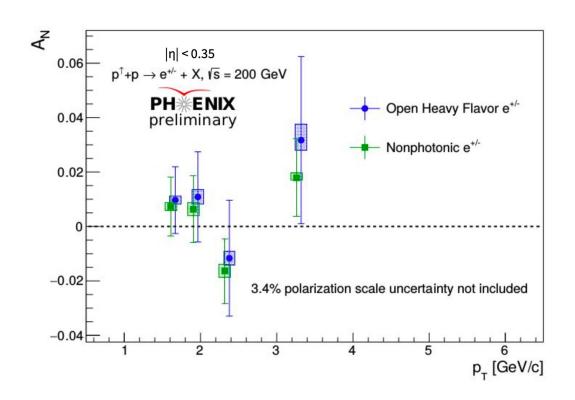
(PRD.103.052009)



TSSA comparison of π^0 and η mesons measured at $|\eta| < 0.35$ in $p^{\uparrow} + p$ collisions at $\sqrt{s} = 200$ GeV.

TSSA of π^0 result plotted with theory in collinear twist-3 and TMD framework predictions.

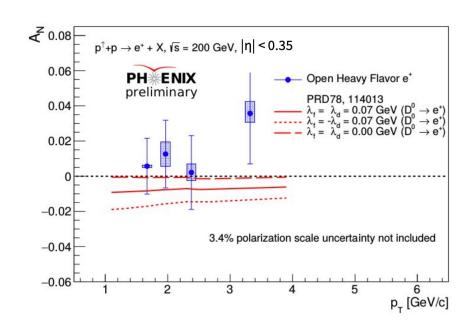
 π^0 and η meson asymmetries are consistent with zero. Larger asymmetry contribution is from gluon dynamics at midrapidity.

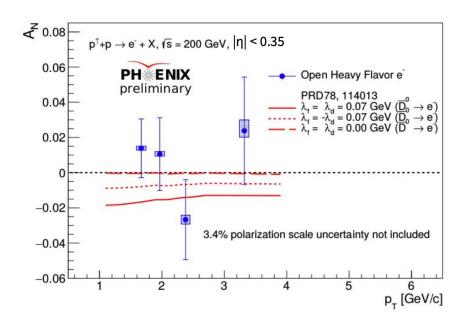

Transverse Single Spin Asymmetry via Charged Pion Production in $\mathbf{p}^{\uparrow} + \mathbf{p}$ at 200 GeV Collisions at Midrapidity (2015 Data)

 A_N of π^{\pm} is consistent with zero, with a slight indication of differences. Hint \rightarrow possibility of different A_N from up and down quarks.

Recent Highlights from the PHENIX Cold-QCD Physics Program 2021 (Spin Workshop)

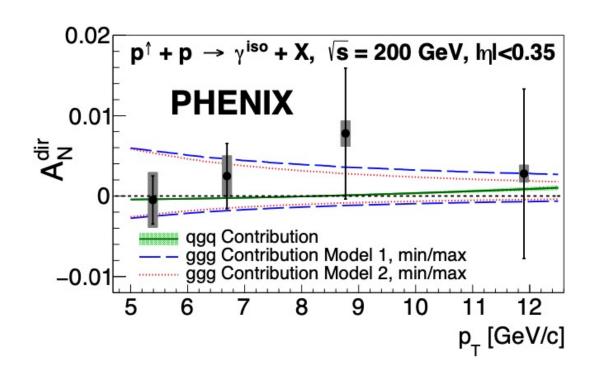
Transverse Single Spin Asymmetries of Heavy Flavor Electrons in 200 GeV $\mathbf{p}^\uparrow + \mathbf{p}$ Collisions at Midrapidity (2015 Data)


Charge combined open heavy flavor electron A_N .


Precise measurement of nonphotonic electron and open heavy flavor TSSA at midrapidity.

Consistent with zero in the measured p_T range.

Transverse Single Spin Asymmetries of Heavy Flavor Electrons in 200 GeV $\mathbf{p}^\uparrow + \mathbf{p}$ Collisions at Midrapidity (2015 Data)

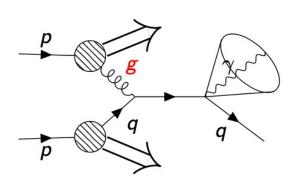

Charge separated open heavy flavor electron A_N

- Red curves indicate $D^0 \to e^{\pm}$ contributions as calculated in *PRD78*, 114013.
- Ordering of curves is different for charge separated $A_N \rightarrow$ sensitivity to constrain λ parameters.
- λ parameters correspond to normalizations of ggg correlators w.r.t. to unpolarized gluon PDF.

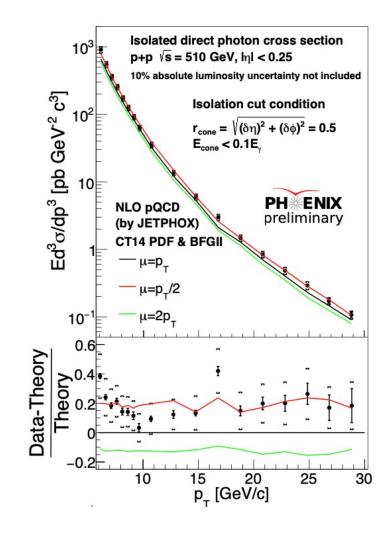
Probing Gluon Spin-Momentum Correlations in \mathbf{p}^{\uparrow} through Midrapidity Isolated Direct Photons in $\mathbf{p}^{\uparrow} + \mathbf{p}$ Collisions at $\sqrt{s} = 200$ GeV (2015 Data)

 A_N of isolated direct photons measured at midrapidity $|\eta| < 0.35$ in p + p collisions at $\sqrt{s} = 200$ GeV.

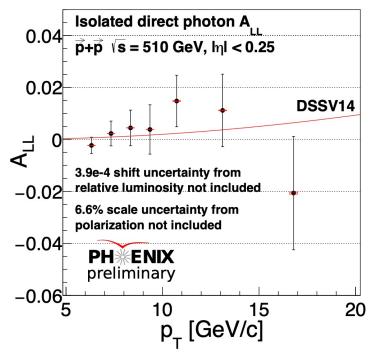
 A_N of midrapidity direct photons is consistent with zero.


First measurement in \sim 30 years by PHENIX experiment in higher p_T range.

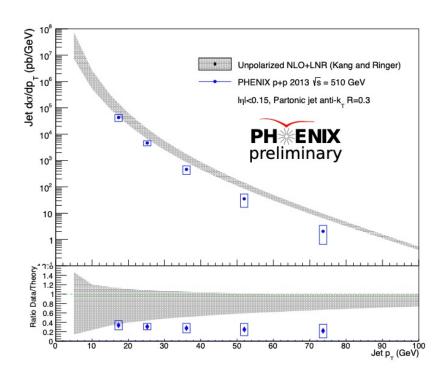
Clean probe of proton structure with no contribution from final-state QCD effects, sensitive to gluon dynamics. If included in global analysis of A_N data, will constrain gluon-momentum correlations in p^{\uparrow} , a vital step toward creating a more 3-D proton structure picture.


Recent Highlights from the PHENIX Cold-QCD Physics Program 2021 (Spin Workshop)

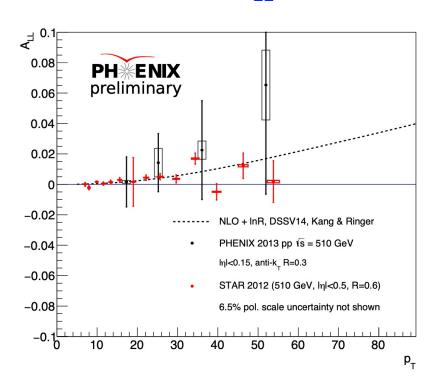
Cross Section and Longitudinal Double Helicity Asymmetry of Direct Photons in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV (2013 Data)


Direct photon cross section

- γ^{dir} measurement→more directly sensitive to gluons.
- Main interaction process is Quark-gluon Compton scattering.


Direct photon A_{LL}

- Consistent with NLO DSSV14
- Constrain polarized gluon PDF Δg .
- Will be first published γ^{dir} A_{LL} result.


Cross Section and Longitudinal Double Helicity Asymmetry A_{LL} of Jet Production in $\overrightarrow{\mathbf{p}} + \overrightarrow{\mathbf{p}}$ Collisions at $\sqrt{s} = 510$ GeV (2013 Data)

Jet cross section

- NLO + In(R) resummation overestimates data.
- Calculation is at partonic level: MPI & parton shower vital.
- For small R anti- k_T , similar observation from CMS.

$\det A_{I.I.}$

Consistent with DSSV14 at NLO+InR resummation. Independent constraint on polarized gluon PDF Δg . Uncertainties are correlated due to the unfolding.

Summary

- Large and positive neutron A_N previously observed by PHENIX in pA is due to UPC dominating hadronic contribution.
- π^0 and η asymmetries are largely due to gluon dynamics and are consistent with zero in measured p_T range.
- $\pi^{\pm} A_N$ may help check if u and d quarks result in different A_N if probe with improved statistics is used.
- Open heavy flavor electron A'_{NS} have been precisely measured by PHENIX and are consistent with zero.
- At midrapidity, $\gamma^{dir} A_N$ is a clean probe of proton structure with no contribution from final-state QCD effects.
- $\gamma^{dir} A_{LL}$ is more directly sensitive to gluons as q-g Compton scattering is main interaction process.
- Measured longitudinal double hecility asymmetry (A_{LL}) of jet is consistent with DSSV14 at NLO + In(R) resummation.