Future physics plan from RHICf

Hiroaki MENJO ISEE, Nagoya University, Japan on behalf of the RHICf II collaboration

Contents

- Physics Motivation
- Operation in 2017 and it's result
- Future plan, RHICf II

2021 RHIC/AGS Annual Users' Meeting, 8-11 June 2021

RHC "forward"

Two main motivations

- **Cosmic-ray physics**
- Understand high energy collisions for precise measurement of high energy cosmic-rays
 - Spin asymmetry measurement
 - To understand the hadronic collision mechanism based on QCD

Physics at Very Forward including "Zero" degree of collisions ZDC ZDC RHICf detector LEFT LEFT RIGHT RIGHT 2021 RHIC/AGS Annual Users' Meeting / Virtual

Motivation 1 - Cross-section measurement -

Issues on UHECR observations

June 8-11, 2021

Neutral pions

- $\pi^0 \rightarrow 2\gamma$
- Induce electromagnetic showers

Leading baryons

- bring the energy to next collisions
- Inelasticity: fraction of energy used for particle productions $k = 1 - E_{\text{leading}} / E_{\text{CR}}$

Motivation 2 - An measurement -

- A_N (transverse single-spin asymmetry) measurement
 - Azimuthal angle modulation
- Large A_N for forward hadron production
- π^0 1< η < 4, X_F dependent \leftrightarrow RHICf coverage: $\eta > 6$
- Neutron asymmetry at zero degree.
- The mechanism is not understood yet.

Operation in Run 17

Two position-sensitive calorimete

- Small tower: 20mm x 20mm
- Large tower: 40mm x 40mm
- Tungsten 44 radiation

- 16 GSO scintillator plates for shower s
- 4 XY GSO bar hodoscopes

Run 17 result: π^0 A_N measurement

- Transverse single-spin asymmetry for very forward neutral pion production in polarized p+p collisions at $\sqrt{s} = 510$ GeV Phys. Rev. Lett. 124, 252501 (2020)
- Zero asymmetry in backward and forward $p_T < 0.07$ GeV/c
- Clear p_T dependency

June 8-11, 2021

Run 17 result: π^0 A_N measurement

- Comparison with high p_T data of past experiments Nearly the same large asymmetry is reached at low $p_{\tau} < 0.2$ GeV/c Contribution of other mechanisms, diffraction and resonance,
- - may provide a hint to the mystery

June 8-11, 2021

On-going analyses

- Production cross-section measurement
 - Forward photon differential cross-section
 - \Box (π^0 and neutron)
- A_N measurement
 - Neutron A_N measurement ($\Delta E/E \sim 40\%$, $\Delta p=1$ mm)
- Combined analyses with STAR in future
 - A_N measurement with separating diffractive and non-diffractive events Diffractive sample with selection of no activity in the central region. Improvement of neutron energy resolution from 40% to 20%

Future plan "RHICf II"

Notivation for RHCf I

- Increase statistics of high-X_F π^0
- Measurement of strange hadrons at 0 degree
 - $\Box \quad \mathsf{K}^{0}_{s} \rightarrow 2\pi^{0} \rightarrow 4\gamma \text{ (B.R. 30.7\%)}$
 - $\Box \Lambda \rightarrow n + \pi^0 \rightarrow n + 2\gamma$ (B.R. 35.9%) For Air shower physics and Atm. neutrino flux (next page)

p + A collisions

- A-dependence of A
 - Strong A-dependence of Neutron by PHENIX (Pays. Rev. Lett 120, 022001 (2018))
 - A-dependence of very forward π^0
- p + light ion collisions for Cosmic-rays
 - Ideal condition for CR-Air interaction studies

Kaons in Air showers

- Muon excess issue
 - If higher Kaon production in high energy \rightarrow increase the muon number on the ground. A high energy π^0 decays immediately \rightarrow EM component, A high energy K⁰ collides air before its decay \rightarrow Hadronic component Large K/π ratio in QGP
 - Impact on Atm. v flux
 - Hot topics: Astro-neutrino detection by IceCube
 - large uncertainty on background estimation of Atm. v
 - Kaons are dominant source of v_{μ} in $E_v <~ 10^{15} eV$

 10^{2} 2078 Day 10^{1} Events per 10⁰

 10^{-1}

New detector for RHICf II

- Develop a completely NEW detector
 - W + Silicon Pad & Pixel calorimeter from ALICE FoCal technology
 - Wide acceptance detector of 8 cm^W x 18 cm^H
 - Optimization for ~ 100 GeV photons Expected energy resolution: $\sigma_{F}/E=25\%/\sqrt{E(GeV)}\oplus 2\%$
- Readout electronics based on HGCROC ASIC (CMS)

June 8-11, 2021

2021 RHIC/AGS Annual Users' Meeting / Virtual

June 8-11, 2021

<u>100</u> <u>100</u>

Operation strategy

- Target of the operation in Run 24 Parasitic operation with other programs
 - No request of a dedicated beam time
 - D No special beam condition except pol. direction
 - Enough radiation hardness for long operation with nominal luminosity
 - No position scan thanks to the wide acceptance detector. Impact on ZDC will be stable during the operation
 - Radial polarization to maximize p_T acceptance Not all the time of the operation ~ 1 shift for setup
- **Operation site** Under discussion.

Status & Schedule

" *"Letter of Intent"* has been submitted to PAC in September 2020

Detector R&D (as ALICE-FoCal R&D) are ongoing

- Confirmation of radiation hardness of Silicon Pad by accelerator
- Beam tests of each components in
- A beam test of Prototype detector at CERN-SPS
- Detector construction;
 - Fix the design in 2021
 - Construction in 2022 and 2023
 - Beam test at CERN-SPS before the operation in Run 24

Summary

- RHICf is an experiment at zero degree measurement at RHIC \Box Single spin asymmetry measurement of very forward π^0 and neutrons. Large and clear pT dependent asymmetry was found.

 - Differential cross-section analyses of photons, π^0 s and neutrons are on-going.
- Another operation with a new detector is planed for Run 24 (RHICf II)
 - \Box High statistics of high energy π^0 events
 - Strange hadrons, K_{s}^{0} and Λ , measurement with wide acceptance detector Description Parasitic operation with other experiments

18