Future Cold-QCD Physics Program with sPHENIX

Jin Huang (BNL)

For the sPHENIX collaboration

B-hadron (DCA) or photon

Jet cor. & substructure Vary momentum/angular size of probe

See also talks: C. Dean on Wed, E. Umaka on Thu

sPHENIX trigger-streaming hybrid DAQ

All sPHENIX tracker support streaming readout \rightarrow Plan to archive 10% all pp collisions in streaming mode:

- Allowing un-triggerable measurement, e.g. low $p_T HF \rightarrow h$
- Increasing spin-tagged M.B. p+p/p+A collisions by 2 to 3 orders of magnitude
- Data preservation from the collection stage for the last high-energy polarized hadron collisions → new analysis w/ EIC

TPC data stream in sPHENIX triggered DAQ

Extending streaming time window, a partial triggerless DAQ

Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

sPHENIX asked to consider 20-28 week runs in 2024

- (Trans-)polarized p + p, p +
 A with streaming readout
 for 28 weeks in Run24
- But short Run24 would endanger the p + A data!

STILLIAN BOT 2021 [STIT THE 2021 CO1], 24 (& 20) CI yo Week Section 103						
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \text{ nb}^{-1}$	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	$0.3 (0.4) \text{ pb}^{-1} [5 \text{ kHz}]$	45 (62) pb ⁻¹
					$4.5 (6.2) \text{ pb}^{-1} [10\% - str]$	
2024	p [↑] +Au	200	-	5	$0.003 \text{ pb}^{-1} [5 \text{ kHz}]$	$0.11 \; \mathrm{pb^{-1}}$
					$0.01 \text{ pb}^{-1} [10\%\text{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹
	2023 2024	$ \begin{array}{c c} \hline 2023 & Au+Au \\ \hline 2024 & p^{\uparrow}p^{\uparrow} \\ \hline 2024 & p^{\uparrow}+Au \end{array} $	[GeV] $ \begin{array}{c cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & &$	2023 Au+Au 200 24 (28) 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 2024 $p^{\uparrow}+Au$ 200 -	[GeV] Weeks Weeks 2023 Au+Au 200 24 (28) 9 (13) 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 12 (16) 2024 $p^{\uparrow}+Au$ 200 – 5	[GeV] Weeks Weeks $ z < 10 \text{ cm}$ 2023 Au+Au 200 24 (28) 9 (13) 3.7 (5.7) nb ⁻¹ 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 12 (16) 0.3 (0.4) pb ⁻¹ [5 kHz] 4.5 (6.2) pb ⁻¹ [10%-str] 2024 $p^{\uparrow}+$ Au 200 - 5 0.003 pb ⁻¹ [5 kHz] 0.01 pb ⁻¹ [10%-str]

sPHENIX cold QCD observables and opportunties

sPHENIX BUP2021 [sPH-TRG-2021-001]

- Transversely polarized observables
 - Sievers-type tri-gluon correlation: γ, HF
 - Hadron AN, pp vs pA: h
 - Sivers effects: γ-jet, di-jet
 - Transversity via Collins FF & IFF: h in jet, di-h
- Spin-averaged observables
 - Quarkonia polarization: J/ψ, Y
 - nPDF: h, jet, di-jet, γ-jet
 - Hadronization, pp vs pA: h in jet, γ-jet, di-jet

Gluon dynamics via y, HF TSSA

sPHENIX BUP2021 [sPH-TRG-2021-001]

TSSA of prompt photon EMCal-based trigger

TSSA of prompt $D^0 \rightarrow \pi K$ Enabled by streaming readout

Nature of hadron A_N in pp and its nuclear modification

- ▶ PHENIX and STAR show significant different suppression of hadron A_N from pp to pA in distinct kinematic regions [see talks B. Mulilo & X. Chu]
- ▶ sPHENIX hadron A_N will explore wider region to help disentangle initial/final state effects
- ▶ Enabled by streaming recorded p + p collision from far vertex collisions

See also current data. talks B. Mulilo & X. Chu PHENIX, PRL123, 122001 STAR, PRD103 (2021) 072005

Nature of hadron A_N in pp and its nuclear modification

sPHENIX BUP2021 [sPH-TRG-2021-001]

Tremendous improvement comparing to the published PHENIX data

Sivers effects via γ-jet, di-jet

- Enabled by high stat. calorimetric jet/photon detection provided by sPHENIX
- Exploring ideas of spin dependent γ -jet, di-jet correlation observables e.g. p_{out} , co-planarity,

charge-tagged jets

Photon-jet

Di-jets

Transversity via charged particle IFF

- ▶ Tremendous stat. enabled by both calorimetric jet trigger and streaming readout
- Need theory collaboration in the treatment of no-PID charged tracks & multi-dim binning

SPHE

Fragmentation in p+A

- Access gluon fragmentation function (FF) in p + p, p + A via jet FF
- Calorimetric triggered jet + precision tracking

sPHENIX and EIC

sPHENIX, under construction

ECCE EIC exp. proposal [See talk by J. Lajoie, Wed]

Summary

- A rich data set of transversely polarized $p+p,\ p+A$ data planned in sPHENIX Run24
 - Importance of a long Run24 for completing both $p+p,\ p+A$ program
- High stat. observables uniquely enabled by high rate calo trigger and tracker's streaming capability
- Address puzzles and explore new directions: gluon dynamics, origin of A_N, spin/nuclei as tool to study QCD

