Future Cold-QCD Physics Program with sPHENIX

Jin Huang (BNL)

For the sPHENIX collaboration
Core physics programs

Jet cor. & substructure
Vary momentum/angular size of probe

Parton energy loss
Vary mass/momentum of probe

Upsilon spectroscopy
Vary size of the probe

ϒ(2s) – 0.56fm
ϒ(3s) – 0.78fm
ϒ(1s) – 0.28fm

Cold QCD
Vary temperature of QCD matter

See also talks: C. Dean on Wed, E. Umaka on Thu

This talk
15 kHz calo trigger + 10% streaming DAQ
10 GB/s data logging

Also proposed upgrades of event plane detector, Micromegas outer tracker
Spin workshop, RHIC AGS AUM2021

Jin Huang

< 2 years!
From now to first data

- 2010: sPHENIX proposed as upgrade / replacement of PHENIX
- 2012: Initial proposal
- 2014: Full proposal
- 2015: BaBar magnet arrives from SLAC
- 2016: Collaboration formed
- 2016: Final PHENIX run
- 2016: Test beam HCal, EMCal
- 2018: CD-0 (mission need)
- 2018: CD-1/3a (begin final design, place long lead-time procurements)

Sept 2019
PD2/3 (review complete)
Begin construction...

Aug 2020
Beam-use proposal

Oct 2020
Transition from MIE detector pre-production to production

Dec 2021
End of construction

Dec 2022
Installation

Dec 2023
Run 2023 Commis & AuAu candles

Dec 2024
Run 2024 pp ref. & cold QCD
Data Campaign 1

Dec 2025
Run 2025 AuAu high/stat
Data Campaign 2?

Dec 2027
Towards a potential relationship with the EIC

Data Campaign 2?
Outer Hadronic Calorimeter

1.4T magnet, tested at BNL

Detector support cradle

EMCal half sector

Inner HCal

TPC endcap support

TPC field cage

Jin Huang
All sPHENIX tracker support streaming readout → Plan to archive 10% all pp collisions in streaming mode:

- Allowing un-triggerable measurement, e.g. low p_T HF→h
- Increasing spin-tagged M.B. p+p/p+A collisions by 2 to 3 orders of magnitude
- Data preservation from the collection stage for the last high-energy polarized hadron collisions → new analysis w/ EIC
TPC data stream in sPHENIX triggered DAQ

What detector sends out: Continues readout data stream

What we write to disk: 20% data @ 200 Gbps Each seg. corresponding to a calorimeter trigger
Extending streaming time window, a partial triggerless DAQ → \(\times O(100) \) gain in statistics!

What we write to disk, 40 Gbps
15kHz triggered events, 0.1% of all collisions

+ Streaming 10% of all collisions, 60Gbps
50% more data but \(\times O(100 - 1000) \) \(p + p \) events!
Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>$\sqrt{s_{NN}}$ [GeV]</th>
<th>Cryo Weeks</th>
<th>Physics Weeks</th>
<th>Rec. Lum.</th>
<th>Samp. Lum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>9 (13)</td>
<td>3.7 (5.7) nb$^{-1}$</td>
<td>4.5 (6.9) nb$^{-1}$</td>
</tr>
<tr>
<td>2024</td>
<td>$p^\uparrow p^\uparrow$</td>
<td>200</td>
<td>24 (28)</td>
<td>12 (16)</td>
<td>0.3 (0.4) pb$^{-1}$ [5 kHz]</td>
<td>0.11 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 (6.2) pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>p^\uparrow+Au</td>
<td>200</td>
<td>–</td>
<td>5</td>
<td>0.003 pb$^{-1}$ [5 kHz]</td>
<td>0.11 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01 pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>20.5 (24.5)</td>
<td>13 (15) nb$^{-1}$</td>
<td>21 (25) nb$^{-1}$</td>
</tr>
</tbody>
</table>

sPHENIX asked to consider 20-28 week runs in 2024
- (Trans-)polarized $p + p$, $p + A$ with streaming readout for 28 weeks in Run24
- But short Run24 would endanger the $p + A$ data!
sPHENIX cold QCD observables and opportunities

- **Transversely polarized observables**
 - Sievers-type tri-gluon correlation: γ, HF
 - Hadron AN, pp vs pA: h
 - Sivers effects: γ-jet, di-jet
 - Transversity via Collins FF & IFF: h in jet, di-h

- **Spin-averaged observables**
 - Quarkonia polarization: J/ψ, Υ
 - nPDF: h, jet, di-jet, γ-jet
 - Hadronization, pp vs pA: h in jet, γ-jet, di-jet
Gluon dynamics via γ, HF TSSA

TSSA of prompt photon EMCal-based trigger

$sPHENIX$ Projection, Years 1-3
62 pb$^{-1}$ samp. $p^+p \rightarrow \gamma + X$, $P=0.57$

qgq Contribution (D. Pitonyak)
Trigluon Contribution Model 1 (S. Yoshida)
Trigluon Contribution Model 2 (S. Yoshida)

TSSA of prompt $D^0 \rightarrow \pi K$
Enabled by streaming readout

6.2 pb$^{-1}$ str. $p+p$, Years 1-3
Kang, PRD78, $\lambda_f = \lambda_d = 0$
Kang, PRD78, $\lambda_f = -\lambda_d = 70$ MeV

[see also current PHENIX results in talk by B. Mulilo]
PHENIX and STAR show significant different suppression of hadron A_N from pp to pA in distinct kinematic regions [see talks B. Mulilo & X. Chu]

- sPHENIX hadron A_N will explore wider region to help disentangle initial/final state effects
- Enabled by streaming recorded $p + p$ collision from far vertex collisions

See also current data. talks B. Mulilo & X. Chu
PHENIX, PRL123, 122001
STAR, PRD103 (2021) 072005

`sPHENIX BUP2021 [sPH-TRG-2021-001]`
Nature of hadron A_N in pp and its nuclear modification

Tremendous improvement comparing to the published PHENIX data
Sivers effects via γ-jet, di-jet

- Enabled by high stat. calorimetric jet/photon detection provided by sPHENIX
- Exploring ideas of spin dependent γ-jet, di-jet correlation observables e.g. p_{out}, co-planarity, charge-tagged jets
Transversity via charged particle IFF

- Tremendous stat. enabled by both calorimetric jet trigger and streaming readout
- Need theory collaboration in the treatment of no-PID charged tracks & multi-dim binning
Fragmentation in p+A

- Access gluon fragmentation function (FF) in $p + p$, $p + A$ via jet FF
- Calorimetric triggered jet + precision tracking

Kaufmann et al. Phys.Rev.D 92 5, 054015
sPHENIX and EIC

sPHENIX, under construction

ECCE EIC exp. proposal [See talk by J. Lajoie, Wed]
Summary

- A rich data set of transversely polarized $p + p$, $p + A$ data planned in sPHENIX Run24
 - Importance of a long Run24 for completing both $p + p$, $p + A$ program
- High stat. observables uniquely enabled by high rate calo trigger and tracker’s streaming capability
- Address puzzles and explore new directions: gluon dynamics, origin of A_N, spin/nuclei as tool to study QCD