

9 June 2021 RHIC/AGS Annual Users' meeting

Yulia Furletova (JLAB), On behalf of ATHENA pre-collaboration

Kick-off meeting for EIC@IP6

https://indico.bnl.gov/event/10825/

Kick-off Meeting for an EIC Detector at IP6 (EIC@IP6)

12-13 March 2021

US/Eastern timezone

Overview

Timetable

Remote Login Instructions

Contribution List

My Conference

My Contributions

Registration

Participant List

Code of conduct

Following the site selection for construction of the U.S. Electron-Ion Collider research facility by the U.S. Department of Energy (DOE) in early 2020, the EIC Users Group led a year-long Yellow Report initiative to define the detector design criteria needed to realize the EIC physics described in the EIC White Paper, supported by the National Academy of Sciences. Using the Yellow Report as input, a Reference Detector concept was presented at the recently held DOE Critical Decision-1 review of the EIC.

A Call for EIC Detector Proposals has been issued by DOE & BNL/JLab on March 6, 2021, with an expected proposal submission deadline on December 1st, 2021. The EICUG community's strong preference for two detectors has led to multiple exciting detector initiatives. We invite all interested groups and consortia to come together to plan for a detector inspired by the Yellow Report detector concept based on a new central detector magnet up to 3T, which could evolve into a concrete proposal and collaboration formation for IP6.

This message is to invite you to a kick-off meeting on March 12-13, 2021. We will review the Yellow Report's work, consider all emerging ideas for EIC detectors, encourage the formation of subsystem consortia, and organize ourselves for the next steps. The meeting is meant to enable forming a collaboration, planning timelines, and developing strategies to engage EIC community members to meet the deadline for submitting a detector proposal.

with 292 register participants, attendance peak at 197,

no session with less than 130 participants

Kick-off meeting for EIC@IP6

the warm and wide Expressions Of Interest presentation:

EIC@IP6

✓ Based on new up to 3T magnet and the YR reference detector

An initial Reference Detector concept was presented at the recently held DOE Critical Decision-1 review of the EIC and is included in the EIC-CDR 2021

It should/will cover the physics of EIC White Paper, NAS report and Yellow Report.

It will fulfill entirely the Call for Detector Proposal mandate for Detector1

✓ Contact to EIC Project Management: Elke Aschenauer

Structuring the collaboration

Temporary structure (still for a few weeks) needed to let the activity progress while preparing a consolidate structure. It includes:

- the coordination committee (eic-ip6-org-l@lists.bnl.gov) (namely the kick-off meeting organizers). Silvia Dalla Torre, Abhay Deshpande, Olga Evdokimov, Yulia Furletova, Barbara Jacak, Alexander Kiselev, Franck Sabatie, Bernd Surrow
- the preliminary IB (one representative per Institution for the time being)
 * the charter in preparation by a dedicated committee (illustrated in the following slides)
- > presently 94 institutions are contributing

A new EIC experiment at IP6 at BNL Home Institutions Community Links Working Groups News and Events Contact Q

Welcome

Following the site selection for construction of the U.S. Electron-Ion Collider research facility by the U.S.

Department of Energy (DOE) in early 2020, the EIC Users Group led a year-long Yellow Report initiative to define the detector design criteria needed to realize the EIC physics described in the EIC White Paper, supported by the National Academy of Sciences. Using the Yellow Report as input, a Reference Detector concept was presented at the recently held DOE Critical Decision-1 review of the EIC.

- > ATHENA pre-collaboration is open to the whole EICUG community
- > Web-page: https://sites.temple.edu/eicatip6
- Mailing lists: https://lists.bnl.gov/mailman/listinfo/
- Join EIC@IP6 on Slack: link

Image design by Joanna Griffin and Shannon West of Jefferson Lab

AGH University of Science and Technology, Krakow, Poland	CUA, USA	Fudan INFN Ferrara, Italy University,China		
Akal University, India	A. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Armenia	Goa University,India	INFN Genova, Italy	
ANL, USA	Czech Technical University in Prague, Czechia	GSI, Germany	INFN Laboratori Nazionali di Frascati,Italy	
Banaras Hindu University , India	DA V College, Chandigrah,India GSU, USA		INFN Laboratori Nazionali del Sud,Italy	
BNL, USA	Daresbury Laboratory, UK	IFJ PAN, Poland	INFN Padova, Italy	
Brunel University, UK Duke University, USA		IJCLab, Université Paris-Saclay, CNRS-IN2P3, Orsay, France	INFN Roma1, Italy	
CCNU Wuhan,China	a FIT,USA INFN Bari		INFN Roma2,Italy	
Central University of Karnataka, India	Florida International University, USA	INFN Bologna, Italy	INFN Torino, Italy	
Central University of Tamil Nadu	Florida State University , USA	INFN Catania, Italy	INFN Trieste, Italy	
CIAE , China	Forschungszentrum Jülich, Germany	INFN Cosenza, Italy		

Indian Institute of Science Research and Education, Berhampur , India	Indian Institute of Technology Patna , India	Lehigh University, USA	National Research Nuclear University MEPhI (NRNU MEPhI), Russia	
Indian Institute of Science Research and Education, Tirupati, India	Institute of Modern Physics, Chinese Academy of Sciences, China	LLNL, USA	Nuclear Physics Institute of the Czech Academy of Sciences, Czechia	
Indian Institute of Technology Bombay , India	Institute of Physics, IOP CAS , China	LLR, CNRS-IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France	ORNL, USA	
Indian Institute of Technology Delhi , India	IPHC, Université de Strasbourg, CNRS- IN2P3, Strasbourg, France	Malaviya National Institute of Technology Jaipur , India	Panjab University, India	
Indian Institute of Technology Indore, India	JLAB, USA	Mount Allison University, Canada	RAL CMOS Sensor Design Group (CSDG) ,UK	
Indian Institute of Technology Madras ,India		National Cheng Kung University,Taiwan	RAL Particle Physics Division (PPD), UK	
	LBNL,USA	National Institute of Science Education and Research,India	Ramakrishna Mission Residential College, Kolkata, India	

Rice University, USA	UC Davis, USA	University of Virginia, USA	
Irfu, CEA-Saclay, Université Paris-Saclay, Saclay, France	UCLA, USA	University of Glasgow, UK	
South China Normal University (SCNU), China	UC Riverside, USA	University of Jammu, India	
Shandong University,China	University of Illinois at Chicago, USA	University of Kansas, USA	
SMU, USA	University of Birmingham, UK	University of Kentucky, USA	
Stony Book University, USA	University of Manitoba, Canada	University of Lancaster, UK	
Subatech, IMT Atlantique, Université de Nantes, CNRS- IN2P3, Nantes, France	University of Massachusetts Amherst	University of Liverpool, UK	
Temple University, USA	University of North Georgia, USA	University of York, UK	
Tsinghua University, China	University of Michigan,USA	University of Science and Technology of China, China	
UC Berkeley, USA	University of Tennessee, USA	UT Austin, USA	

EIC@IP6 → ATHENA

24 naming proposals, 23 LOGO proposals open to the whole collaboration

https://sites.temple.edu/eicatip6/athena-logo-competition/

ATHENA Experiment

Unlocking the secrets of the Universe

Charter Committee

in parallel an active ad hoc committee is preparing a charter:

Our Charter Committee:

Ken Barish (UC Riverside)

Olga Evdokimov (UIC)

David Gaskell (JLAB)

Nicole d'Hose (CEA-Saclay)

Tom Hemmick (Stony Brook)

Zein-Eddine Meziani (ANL)

Bedanga Mohanty (NISER)

Marta Ruspa (Torino)

Murad Sarsour (GSU)

Ernst Sichtermann (LBNL)

Daria Sokhan (Glasgow)

Thomas Ullrich (BNL)

Anselm Vossen (Duke)

Qinghua Xu (Shandong)

Meetings began on 4/23 and have made significant progress laying the foundations for the developing document

The goal is to have a full draft available by early June, for the subsequent iterations with the IB and the adoption vote.

Proposal Committee

✓ Ex-officio / Official EIC project contact: Elke Aschenauer

- □ Integration / Global design: Bedanga Mohanty, Franck Sabatie, Alexander Kiselev, Thomas Ullrich, Silvia Dalla Torre
 - Engage in a dialog between physics WGs concerning requirements and subsystem WGs concerning performance and help realize a global detector model based on performance, cost, maturity, and institutional commitment while
 - Keeping the ATHENA community fully informed about design considerations, ensuring opportunities for feedback from collaborators.
- □ Costing: Bernd Surrow, Olga Evdokimov, Zhangbu Xu, Yulia Furletova
 - Use cost template from EIC project team and EIC reference detector costing evaluation presented to the ICR in January 2021 as a starting point for completing detector costing.
 - Communicate with subsystem WGs about costing: Subsystem template, expected cost bracket, holding regular
 costing meetings with a "costing" representative for each subsystem WGs.
 - Prepare full costing of detector proposal with advice/input from the EIC project team and ATHENA community.
- □ Draft/ Editing: Abhay Deshpande, Barbara Jacak, Zein-Eddine Meziani, Peter Jones
 - Prepare a draft outline for the detector proposal and present it to the ATHENA community using shared overleaf document.
 - Writing of introductory material.
 - o Solicit input from WGs specifying details for each section, including costing from the costing focus group.
 - o Compiling the entire document, soliciting comments, and finalizing the document.

WG conveners and charge highlights

Subsystem detector WG Conveners:

Technology choices / Estimate of services, support + active materials / Implementation into global experimental model / Simulation of subsystem performance in the global experiment / Costing of each subsystem

Tracking: Francesco Bossu, Domenico Elia, Laura Gonella, Matt Posik

PID: Frank Geurts, Tom Hemmick, Roberto Preghenella Calorimetry: Vladimir Berdnikov, Paul Reimer, Oleg Tsai Far Forward: John Arrington, Alexander Jentsch Far-Backward: Jaroslaw Adam, Krzysztof Piotrzkowski DAQ: Alexandre Camsonne, Jeffery Landgraf Polarimetry*: Oleg Eyser*, Ciprian Gal (*we propose Polarimetry as a joint group across EIC detectors)

Physics Validation WG Conveners:

Identify key observables described in YR / 2-3 plots which will illustrate the ability of EIC@IP6 to address NAS report and YR / Additional physics performance plots that would give a competitive advantage for the proposal?

Inclusive: Paul Newman, Barak Schmookler, Qinghua Xu Semi-inclusive: Marco Radici, Anselm Vossen Jets/HF/EW-BSM: Miguel Arratia, Brian Page, Stephen Sekula, Ernst Sichtermann

Exclusive: Salvatore Fazio, Spencer Klein, Daria Sokhan

Software WG Conveners:

Full detector assembly / Assist detector and physics WG's to perform simulation and detector integration / Complete and improve reconstruction software

Whitney Armstrong, Andrea Bressan(*), Wouter Deconinck, Sylvester Joosten, Dmitry Romanov (*)- liaison to EICUG software group

9 June 2021

Highlights from the WGs

https://sites.temple.edu/eicatip6/calendar/collaboration-calendar/

Bi-weekly ATHENA meetings on Thrs 11-2pm EDT

Monthly ATHENA meetings on Thr 8pm-11pm EDT (for ASIA)

New Solenoid (up to 3T)

Solenoidal Configuration

Version for full analysis

Magnetic field map released 07/05/2021

On the Interaction Point rz plane

$$Proj = \frac{B_z \tan \Theta - B_r}{J_E}$$

If Proj = 0 everywhere, particles are not deflected from the original trajectory (same as $\frac{dP}{dt} = 0$)

Parameter	Values
B _{IP} (T)	3.15
B _{peak} (T)	4.35
Coil thickness (mm)	200
Energy (MJ)	183.9
H TPC 2 (%)	6.61
H FLAT 1 (%)	25.12
Projectivity (T/Amm²)	14.82

Goal
3.00
1600
3600
5.0
10.0
min

	$H_{TPC}^2 = \left \frac{B_r}{B_z} \right < 5\%$	
H_{FL}^1	$_{AT} = \frac{B_{max} - B_{min}}{B_{IP}} < 1$	10%

Helmholtz Configuration

Parameter	Values
B _{IP} (T)	2.97
B _{peak} (T)	4.84
Coil thickness (mm)	210
Energy (MJ)	235.7
H TPC 2 (%)	4.83
H FLAT 1 (%)	16.37
Projectivity (T/Amm²)	17.51

Mostly difficult to reach before the RICH Due to the short length of the magnet

Silicon vertex and tracking detector

Primary and secondary vertex reconstruction + momentum measurement in combination with gas based tracking system at larger radii and Z (see next slides)

Currently two configurations studied: "YR hybrid" and "YR all-silicon"

- Both based on ALICE ITS3 65 nm MAPS sensor
- Ongoing layout optimisation: # of vertex layers and disks, integration of barrel region with disks, overall integration with MPGD tracking detector, ...

# layers/disks	Vertex	Barrel	Endcaps	
YR Hybrid	3+2	2	7 fwd + 7 bwd	
YR All-silicon	2	2+2	5 fwd + 5 bwd	

10µm pixel pitch

 $x/X_0 = 0.05\%$ per vertexing layer

 $x/X_0 = 0.55\%$ per tracking layer

 $x/X_0 = 0.24\%$ per disk

1.0 ≤ n ≤ 2.5. Uniform 3.0 T

Transverse Pointing Resolution for Hybrid Baseline

Momentum performance

Results from the YR studies compared with Physics WG (PWG) requirements:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

End Cap Trackers

End cap trackers can be relatively large. MPGD based tracking detectors can cover large areas and provide tracking information at a reasonable cost.

Hardware R&D work within eRD6 and eRD22

- ☐ Large area GEM for forward / backward trackers
 - Large area (1 m \times 0.5m) & Low mass GEMs (\sim 0.5% X/X0)
- ☐ High performance & low channels count anode readout for MPGD
 - ☐ Zigzag strips, Capacitive-sharing readout
- ☐ GEM-based transition radiation detector (GEM-TRD)
 - □ Prototyping and Gas system
 - \square Provide e/π discrimination and tracking
- □ Resistive Micro-Well (µRWELL) technology
 - □ Develop large area µRWELL with capacitivesharing readout

9 June 2021

All-Silicon and Hybrid Concepts

Current detector concepts have general layouts and technologies. Discussions of specific choices now

underway within tracking WG.

- □ All-Silicon concept
 - Vertex/Barrels and disks
 - EIC Silicon consortium
- ☐ Hybrid concept
 - MPGD end cap: (GEMs or micro R-Wells)
 - Florida Tech., Temple, UVa
 - MPGD barrel
 - Micromegas Saclay
 - Micro R-Well Florida Tech, Temple, UVa
 - Silicon vertex/barrels and disks
 - EIC Silicon consortium
 - Large z MPGD-TRD
 - BNL, Florida Tech. Jlab, Temple, UVa, Vanderbilt

Low momentum PID with GridPix

Known and Proven Technology for GridPix

- GridPix is a 55 μm × 55 μm pixel readout for a gaseous TPC
- First Timepix3 based GridPix test beam (2017)
- Quad module performance from test beam (2018)
- Investigations of the 8 quad detector (2020)

Ultimate dE/dx Device

- Avalanche grid in front of 55 x 55 μm2 pixels.
- Greater than 90% efficiency for single electrons.

Goal:

- Enough diffusion to get every electron into a different hole
- Count electrons one-by-one.
- Three generations of development and continuing.
- Large area is VERY expensive, but this proposal is small area.

4-sided buttable pixel arrangement

- Model 4 replaces wires bond with bump bond (improves active area) (93.7% -> 99.5% active area)
- DAQ interface by Through-Silicon-Vias (TSV).

Preliminary Geometry in GEANT

SEM image of an InGrid

Current Group Members:

Tom Hemmick, Klaus Dehmelt, Sanghwa Park, Prakhar Garg (SBU) Nikolai Smirnov (Yale) Jochen Kaminski (Bonn)

HPDIRC FEATURES

Concept:

- Fast focusing DIRC, utilizing high-resolution 3D (x,y,t) reconstruction
- Innovative 3-layer spherical lenses, compact fused silica expansion volumes
- Fast photon detection using small-pixel MCP-PMTs (eRD14) and high-density readout electronics (eRD14)

Excellent performance over wide angular range:

- \geq 3 s.d. π/K up to 6 GeV/c, \geq 3 s.d. e/π up to \sim 1.2 GeV/c
- Low momentum π/K identification in "veto mode" down to 0.2-0.3 GeV/c

Features:

- Radially compact (8-10 cm; impact on cost of post-DIRC systems)
- Flexible design (to deal with sensor in B-field and detector integration)
- Low demand on detector infrastructure (no cryogenic cooling, no flammable gases)
- R&D at advanced stage (PID performance estimate based on test beam results, excellent agreement between detailed simulation and prototype data, fast simulation available)

Involved institutions: CUA, GSI, BNL, W&M, USC, SBU, UH, JLab, ODU

dRICh Overview

Radiators:

• Aerogel: 4 cm, $n_{(400nm)} \sim 1.02 + 3$ mm acrylic filter

• Gas: 1.6m (1.1m ePHENIX), n_{c2E6}~1.0008

6 Identical Open Sectors (Petals):

- Large Focusing Mirror with R ~2.9m (~2.0m ePHENIX)
- Optical sensor elements: ~4500 cm²/sector, 3 mm pixel size, UV sensitive, out of charged particles acceptance

Optimized for JLEIC, preliminary implementation in ePHENIX

Typical

contributions

to angular errors

Phase Space:

- Polar angle: 5-25 deg

-Momentum: 3-50 GeV/c

≈ 100 ÷ 160 cm

9 June 2021

ATHENA Calorimetry at a glance.

- · High Resolution EndCaps.
- Technologies developed during EIC generic detector R&D. Well established and spread in the EIC users community.
- Barrel Calorimeters being optimized,
 depends on design of the new SC magnet.

- WScFI EM section of Hadron EndCap.
- Technology pioneered at UCLA.
- · Very Compact with good EM resolution.
- Similar technology now used in construction of sPHENIX emcal.

STAR Forward Calorimeter System.

Constructed in 2020 with new, very efficient method.

HCal Fe/Sc, similar technology for EIC reference detector.

Expected performance of ATHENA hadron endcap (improved version of STAR FCS) $_{24}$

High resolution electron arm ECAL. EEEmCal.

9 June 2021

PbWO4 crystals (inner)

- compact, radiation hard, luminescence yield to achieve high energy resolution, including the lowest photon energies
- Sensor: SiPMs (TBC)

SciGlass (outer)

- EIC eRD1
- radiation hard, luminescence yield similar or better than crystals depending on longitudinal length
- Sensor: SiPMs (TBC)

SHMS EMCal: 28 TF-1 (preshower) and 224 F-101 (shower) blocks

NPS: 1080 PbWO₄ (CRYTUR, SICCAS)

STAR: installed ECAL of the forward upgrade

ATHENA Far-Forward Detectors

- Roman pots and ZDC cover the normal diffractive proton tagging and neutron/photon tagging from nuclear breakup.
- OMD required for tagging protons and pions from nuclear breakup and lambda since they will have a different magnetic rigidity in the beamline than the beam itself.
- B0 required for tagging protons at higher angles (especially important for lower beam energies).
 B2pf dipole

Detectors

€ -0.5

far-backward

detectors

far-forward

detectors

ATHENA Far-Forward Detectors

Interested parties: LANL, and others

with "potless" design to maximize acceptance.

ATHENA Far-Backward Detectors

We aim to measure the EIC luminosity with a precision better than 1% using the electron-ion bremsstrahlung:

Dedicated detectors will measure "zerodegree" photons, and the design effort started from the challenging design of the photon exit window, hit by a SR fan.

max positron UP dipole min **PHOT** Q^2 photon max electron exit window DOWN length miń See more about the EIC luminosity measurement later this morning: https://indico.bnl.gov/event/11322/#day-2021-06-09

A fraction of the scattered electrons in bremsstrahlung will be measured too, and the electron detectors will also be used to tag low-Q² Events (photoproduction) in ATHENA:

Interested groups in this ATHENA project: AGH UST (Kraków), BNL, Glasgow Univ., IFJ PAN (Kraków), Temple Univ.

Polarimetry (joint with EICUG WG)

- Hadron Polarimeter at IP6 (elastic recoil)
- pC for relative polarimetry
- Inside of spin rotators / crab cavities
- Confirmation of polarization vector (start of fill)
- Polarization bunch profile (after crab rotation)
- Ultra-thin Carbon fiber targets may not be suitable for high bunch repetition rate at EIC
- Electron Polarimeter at IP6 (Compton scattering)
- Backscattered photon needs feedthrough for some magnets
- Available acceptance, effect of beam pipe/exit window
- Cross talk between longitudinal/transverse asymmetries

EIC UG working group on polarimetry/luminosity https://indico.bnl.gov/category/280/

Monthly meetings → higher frequency for proposal specific topics

Software & Computing WG

Software & Computing Conveners:

Whitney Armstrong, Andrea Bressan(*), Wouter Deconinck, Sylvester Joosten, Dmitry Romanov (*)- liaison to EICUG software group

Day 0 WG support:

Kolja Kauder, Miguel Arratia, Stephen Sekula, Dmitry Romanov, Yulia Furletova, Andrea Bressan

Full simulation/reconstruction team

Whitney Armstrong, Miguel Arratia, Wouter Deconinck, Sylvester Joosten, Jihee Kim, Chao Peng, Tomas Polakovic, Dmitry Romanov, Marshall Scott, Zhenyu Ye, Ziyue Zhang, Maria Żurek ...and a rapidly growing amount ATHENA collaborators!

User support and documentation

Documentation portal: doc.athena-eic.org

Full simulation tutorial

<u>eic-ip6-software-l@lists.bnl.gov</u> #software-helpdesk at Slack Bi-weekly software meeting: Thursday 12:00pm EDT

ATHENA central detector

ATHENA detector implementation

Reasonable detail in central detector tracking

Detailed geometry and services for silicon tracker

■ µRWEL detectors around the DIRC

TRD in forward region

Detector and FF beamline

Various ECAL and HCAL options with support structures

Latest Solenoid geometry and beamline setup

 Working with PID working group to enhance implementations of dRICH, mRICH and DIRC systems.

Working with Far Forward and Far Backward WGs to implement the full beamline and near-beamline detector system.

Next step: validate tracking geometries and reconstruction performance (Gaudi+ACTS) together with tracking WG

The DD4HEP community

"framework for providing a complete solution for full detector description (geometry, materials, visualization, readout, alignment, calibration, etc.)"

Summary

- > ATHENA is international pre-collaboration, currently includes 94 institutions
- To join: send email to <u>eic-ip6-org-l@lists.bnl.gov</u>
- Stay connected: subscribe to public mail <u>eic-ip6-public-l@lists.bnl.gov</u> or join Slack: <u>link</u> or webpage https://athena-eic.org/meetings-and-events/
- > ATHENA detector
 - ✓ It is based on the EICUG reference detector.
 - ✓ The Yellow Report physics studies show that it meets the requirements
 - ✓ A new 3 T magnet matching this configuration is being designed.
 - ✓ The detector includes a variety of different technologies for tracking, calorimetry, particle identification and ancillary detectors along the beam line
 - ✓ The technology choice is largely determined by the EIC Detector R&D Program
- A concrete configuration will be defined shortly in the detector proposal drafting process, based on the groups joining the effort, within the available cost range
- ➤ The detailed Geant4 simulations will be conducted for this coherent detector setup (DD4HEP implementation)

Thank vou!

Unlocking the secret of the Universe

ATHENA

Backup

Vertex/tracking performance

Results from the YR studies compared with PWG performance summary:

all-silicon

Tracking performance (All-silicon concept, B = 3 T)								
			Momen	tum res.	Transverse pointing res.			
η			Performance Requirements		Performance	Requirements		
-3.5 to -3.0 -3.0 to -2.5			σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 0.5%	dca(xy) ~ 60/pT μm ⊕ 20 μm	dca(xy) ~ 30/pT μm ⊕ 40 μm		
-2.5 to -2.0 -2.0 to -1.5		Backward Detector	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 0.5%	dca(xy) ~ 40/pT μm ⊕ 10 μm	dca(xy) ~ 30/pT μm ⊕ 20 μm		
-1.5 to -1.0 -1.0 to -0.5 -0.5 to 0 0 to 0.5 0.5 to 1.0	Central Detector	Barrel	σp/p ~ 0.02%×p ⊕ 0.5%	σp/p ~ 0.05%×p ⊕ 0.5%	dca(xy) ~ 30/pT μm ⊕ 5 μm	dca(xy) ~ 20/pT μm ⊕ 5 μm		
1.0 to 1.5 1.5 to 2.0 2.0 to 2.5		Forward	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 1%	dca(xy) ~ 40/pT μm ⊕ 10 μm	dca(xy) ~ 30/pT μm ⊕ 20 μm		
2.5 to 3.0 3.0 to 3.5	Detector		σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 2%	dca(xy) ~ 60/pT μm ⊕ 20 μm	dca(xy) ~ 30/pT μm ⊕ 40 μm dca(xy) ~ 30/pT μm ⊕ 60 μm		

Hybrid (Si+TPC)

Tracking performance (Hybrid concept, B = 3 T)										
			Momentum res.		Minimum pT		Transverse pointing res.			
η			Performance	Requirements	Performance	Requirements	Performance	Requirements		
-3.5 to -3.0			σp/p ~ 0.05%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 50/pT μm ⊕ 10 μm			
-3.0 to -2.5		Backward	ορ/p · σ.σσ /σ~p ⊕ 2 /σ	ορ/p ≈ 0.1 /8×p ⊕ 0.5 /8		100-150 MeV/c	dca(xy) = 30/ρ1 μπ	dca(xy) ~ 30/pT μm ⊕ 40 μm		
-2.5 to -2.0		Detector	σp/p ~ 0.11%×p ⊕ 0.4% (0-8 GeV/c)		160-220 MeV/c	100-150 MeV/c	dca(xy) ~ 25/рТ µm ⊕ 3 µm			
-2.0 to -1.5		Detector	σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c)	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c		dca(xy) ~ 30/pT μm ⊕ 20 μm		
-1.5 to -1.0			ορ/ρ ~ 0.04 % ~ ρ ⊕ 1 % (6-30 GeV/c)		300 MeV/c	100-150 MeV/c				
-1.0 to -0.5										
-0.5 to 0	Central	Barrel	σp/p ~ 0.11%×p ⊕ 0.2% (0-5 GeV/c)	σp/p ~ 0.05%×p ⊕ 0.5%	400 MeV/c	100-150 MeV/c	dca(xy) ~ 15/pT μm ⊕ 2 μm	dca(xy) ~ 20/pT μm ⊕ 5 μm		
0 to 0.5	Detector	σρί	σp/p ~ 0.03%×p ⊕ 0.5% (5-30 GeV/c)	σp/p ~ 0.03%×p ⊕ 0.5% (5-30 GeV/c)	Op/p ~ 0.05% × p ⊕ 0.5%	op/p ~ 0.03%×p ⊕ 0.5%	op/p ~ 0.05%×p ⊕ 0.5%	(90% acceptance) 100-150 MeV/C dca(xy) ~ 15/ρ1 μm € 2	dca(xy) ~ 15/ρ1 μπ θ 2 μπ	1 dca(xy) ~ 20/ρ1 μm ⊕ 5 μm
0.5 to 1.0										
1.0 to 1.5			σp/p ~ 0.11%×p ⊕ 0.4% (0-8 GeV/c)		300 MeV/c	100-150 MeV/c				
1.5 to 2.0		Forward	Forward σp/p ~ 0.04%×p ⊕ 1% (8-30 GeV/c)	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 25/pT µm ⊕ 3 µm	dca(xy) ~ 30/pT μm ⊕ 20 μm		
2.0 to 2.5		Detector			160-220 MeV/c	100-150 MeV/c	1			
2.5 to 3.0		Detector	σp/p ~ 0.05%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 50/pT µm ⊕ 10 µm	dca(xy) ~ 30/pT μm ⊕ 40 μm		
3.0 to 3.5						100-150 MeV/c		dca(xy) ~ 30/pT μm ⊕ 60 μm		