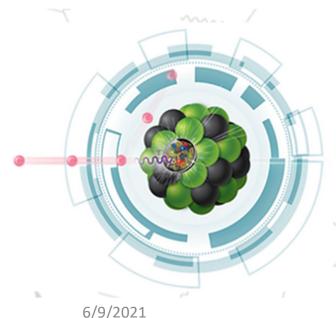


The ECCE Experiment

John Lajoie

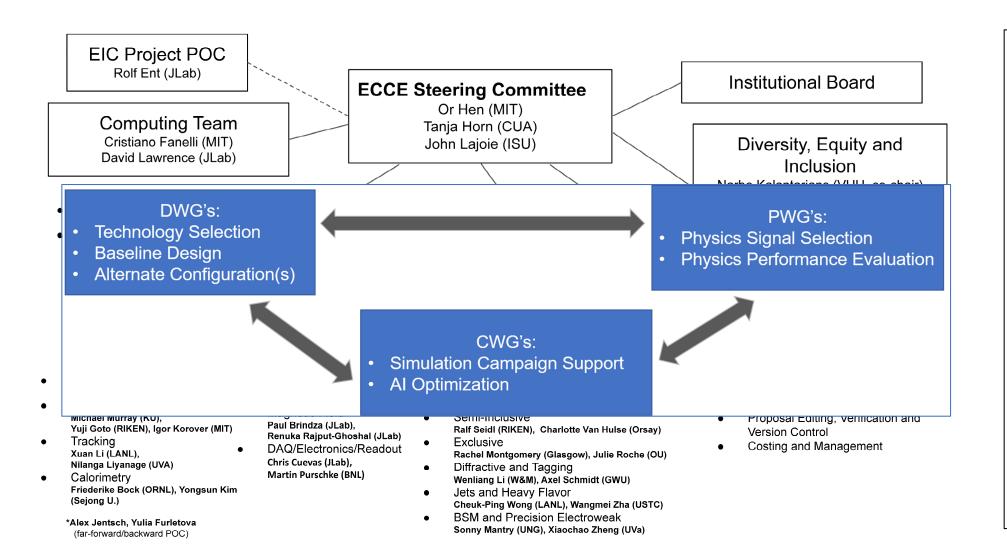
Iowa State University

for the ECCE Consortium



ECCE 101

ECCE


EIC Comprehensive Chromodynamics Experiment

- ECCE is 77 institutions (& counting) collaborating to design an EIC detector offering full kinematic coverage and an optimized far forward detector system
- ECCE is investigating a design which incorporates the existing 1.5T BaBar magnet, which will help reduce cost and risk, to allow it to be ready for first EIC detector operations (CD4a)
- ECCE is also investigating the costs and benefits associated with using either IP6 with 25 mrad crossing angle, or IP8 with 35 mrad
- ECCE is planning to submit a proposal to be the EIC project detector ("Detector 1"), which will address the complete science program outlined in the NAS report and Yellow Report
- ECCE is fully supportive of two detectors at the EIC, in both IR8 and IR6, to maximize the scientific output of the EIC
- ECCE is open to everyone in the community to participate, even if they wish to contribute to other proposals.

Website:

https://www.ecce-eic.org/

Mailing Lists:

https://lists.bnl.gov

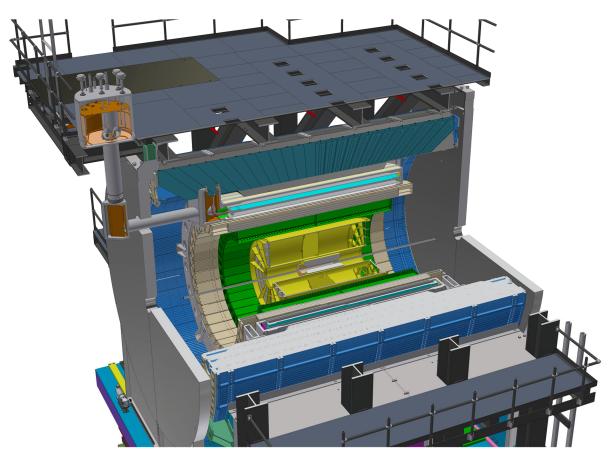
- ecce-eic-public-l
- ecce-eic-ib-l
- ecce-eic-comp-l
- ecce-eic-dei-l
- ecce-eic-det-l
- ecce-eic-phys-l
- ecce-eic-prop-l

Indico:

https://indico.bnl.gov/categ ory/339/

ECCE is Growing...

1.	AANL/Armenia*	21.	Hampton	41.	NTU/Taiwan*	61.	UKY
2.	AUGIE	22.	HUJI	42.	ODU	62.	U. Ljubljana/Slovenia*
3.	BGU/Israel*	23.	IJCLab-Orsay/France*	43.	Ohio U	63.	UNH
4.	BNL	24.	IMP/China*	44.	ORNL	64.	USTC/China*
5.	Brunel University*	25.	Iowa State	45.	PNNL	65.	UT Austin
6.	Canisius College	26.	IPAS/Taiwan*	46.	Pusan Natl. Univ.*	66.	UTK
7.	CCNU/China*	27.	JLab	47.	Rice	67.	UTSM/Chile*
8.	Charles U./Prague*	28.	Kyungpook Natl. Univ./Taiwan*	48.	RIKEN/Japan*	68.	UVA
9.	CIAE	29.	LANL	49.	Rutgers	69.	Vanderbilt
10.	CNU	30.	LBNL/Berkeley	50.	Saha / India*	70.	Virginia Tech
11.	Columbia	31.	Lehigh University	51.	SBU	71.	Virginia Union
12.	CUA	32.	LLNL	52.	SCNU/China*	72.	Wayne State
13.	Czech. Tech. Univ.	33.	Morehead State	53.	Sejong U.	73.	WI/Israel*
14.	Duquesne U.	34.	MIT	54.	TAU/Israel*	74.	WM
15.	Duke	35.	MSU	55.	Tsinghua U./China*	75.	Yonsei Univ.*
16.	FIU	36.	NCKU/Taiwan*	56.	Tsukuba U./Japan*	76.	York/UK*
17.	Georgia State	37.	NCU/Taiwan*	57.	CU Boulder	77.	Zagreb U./Croatia*
18.	Glasgow/Scotland*	38.	NMSU	58.	UConn		
19.	GSI/Germany*	39.	NRNU MEPhI/Russia*	59.	UH		
20.	GWU	40.	NTHU/Taiwan*	60.	UIUC		


^{*}Non-US institutions (36%)

Existing Infrastructure

- Existing BaBar solenoid (1.5T), flux return and cradle
 - Substantial investment/risk reduction
- IP8 infrastructure
 - Cryogenic connection to RHIC
 - Racks, mechanical, safety, electrical, etc.
- Potential re-use/refurbish existing sPHENIX detectors as appropriate
- ECCE consortium has considerable recent DOE project experience

Currently under construction, sPHENIX represents a \$27M investment by DOE (MIE)

1.5T BaBar Solenoid

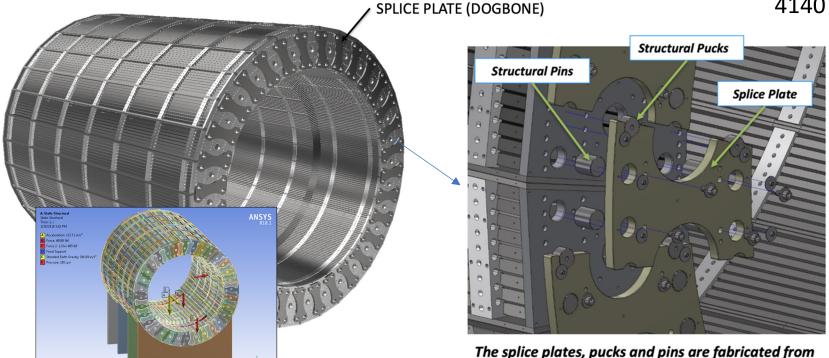
under construction

ECCE

shipping to BNL

- Built in 1997 (Ansaldo)
- Very conservative design
- 3.7m long,1.4m bore radius
- Designed for 1.5T @ 5kA
 - 20MJ stored energy
- Transported to BNL 2015
 - Successful low and high field tests
- Extensive risk analysis shows that the magnet is in excellent shape
 - Some refurbishment required

Designed BaBar and CMS 4T superconducting magnets


Recipient of IEEE Award for Continuing and Significant Contributions in the Field of Applied Superconductivity (2020)

Other Infrastructure...

Multiple rounds of prototyping to adapt 4140 HT process to thick material:

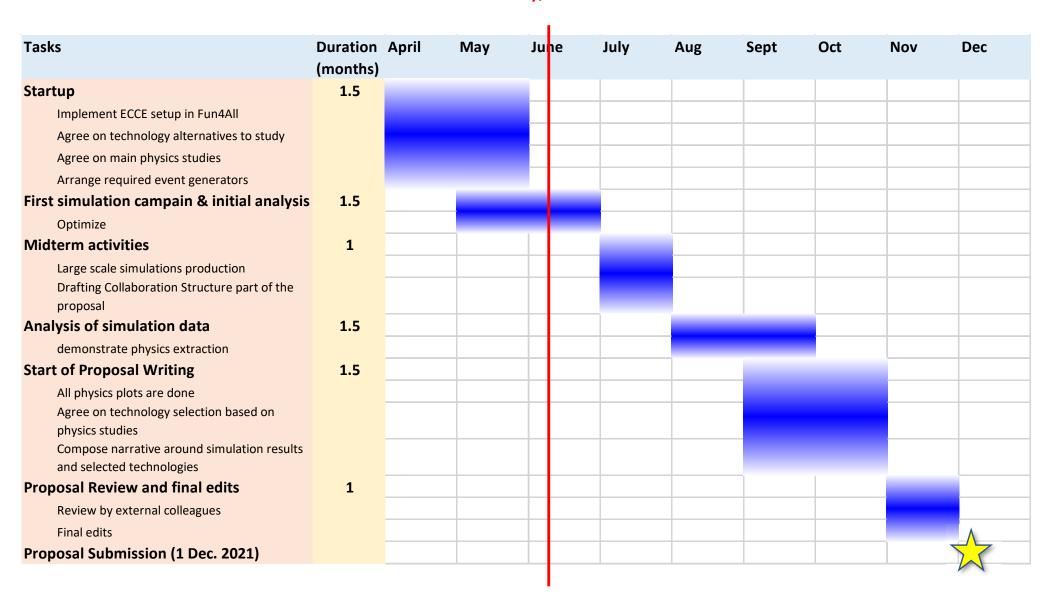
Initial attempt cracked when machined, required modified treatment and machining

engineering, FEA, reviews, prototyping, material choice, vendor selection, test fitting, and so on

8+ months to engineer and certify "dogbone" plates: reuse brings time and cost savings

high strength steel (AISI 4140 HT) to ensure there is a high safety factor for the oHCAL arch ring structure

ECCE Highlights from Past Few Months


Much activity – moving at a rapid pace to meet the global timeline

26 February: first IB meeting ☐ April 1st - ~June 7th: Start up activities Finish implementing initial ECCE setup in Fun4All. 5 March: IB approves the Consortium Structure Identify technology alternatives to study with Fun4All. Identify key physics processes to address physics of NAS/YR ■ March 2021 Collected required event generators Team Conveners were selected Wiki was setup to collect information Additional institutions joined the effort 21 May: 2nd Simulation Workshop Team Conveners added WG co-conveners Demonstration of pipeline for AI detector optimization Mailing lists were set up Indico pages were set up ☐ Mid-June: ECCE Baseline 2 April: 1st Simulations Workshop was held Finish implementing initial ECCE baseline setup in Fun4All. First simulation campaign 9 April: Start of PWG/DWG meetings

ECCE Timeline

Today, 9 June 2021

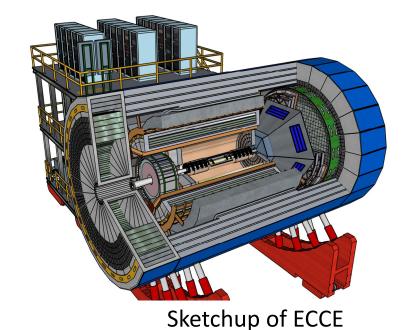
ECCE Detector Team – Detailed Studies Ongoing

Team Leaders: Ken Read (ORNL) and Doug Higinbotham (JLab)

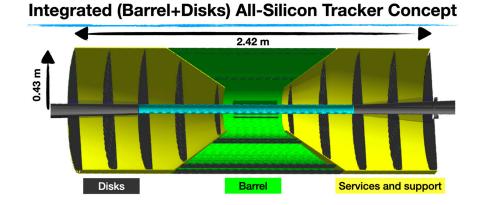
Topic and Conveners

Magnetic Field: Paul Brindza (JLab) & Renuka Rajput-Ghoshal (JLab)

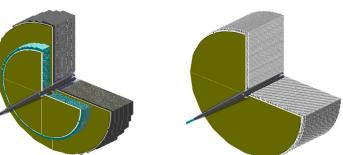
Tracking: Xuan Li (LANL) & Nilanga Liyanage (UVA) Particle ID: Greg Kalicy (CUA) & Xiaochun He (GSU)

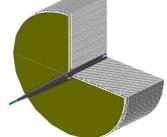

Calorimetry: Friederike Bock (ORNL) & Yongsun Kim (Sejong U.)

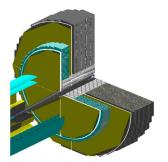
DAQ/Electronics/Readout: Chris Cuevas (JLab) & Martin Purschke (BNL)


Far Forward/Far Backward: Michael Murray (KU)

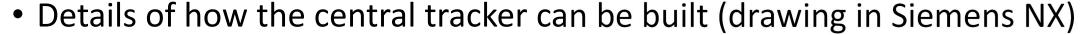
IP8/Equipment Re-use: John Haggerty (BNL)


Calendar of meetings can be found at: https://indico.bnl.gov/category/345/




Detailed review of Calorimetry options (far forward shown)

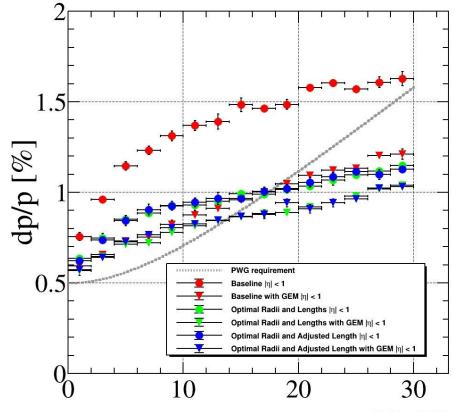
Presented at May 11th ECCE Tracking Meeting


Presented at May 4th Calorimetry meeting

Tracking DWG Progress

• Tracking DWG has recently presented updates on studies of:

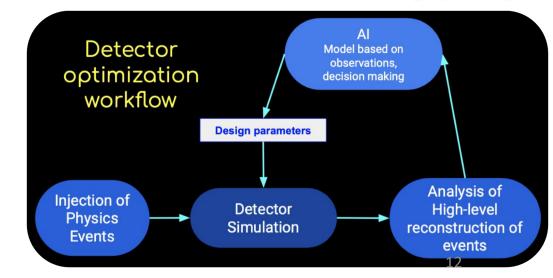
- MAPS Silicon tracker barrel performance
- Forward silicon tracker performance
- μRWell (MPGD) end-cap tracking
- o Further recent details here:
 - o https://indico.bnl.gov/event/11654/
 - o https://indico.bnl.gov/event/11659/



- Will need to clam shell around the beamline
- Details like the cooling lines and cables shown & add to the material budget.
- Development of AI pipeline for optimizing tracker design:
 - o https://indico.bnl.gov/event/12052/

Al Detector Optimization

- Al WG is starting to optimize ECCE
- Building on existing experience (e.g. dRICH)
- Working from the inside out
- First ECCE-specific example: Tracker layer radii
- Pushing to optimize for PHYSICS as opposed to single detector element performance



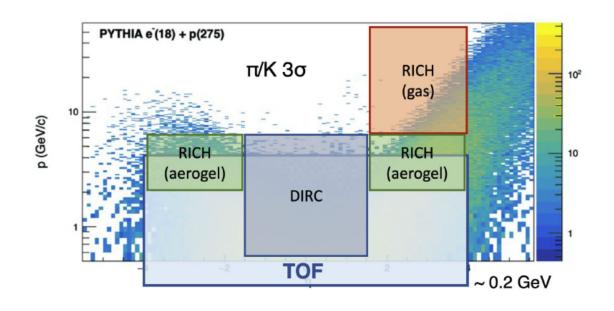
Cristiano Fanelli (MIT), William Phelps (CNU/Jlab)

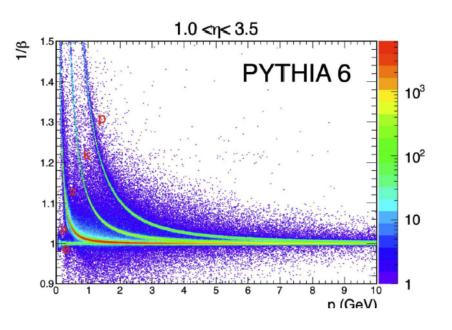
p [GeV]

EXCELLENT Opportunities:

- A. For collaborators to contribute and gain experience in Al
- B. For ECCE to integrate AI starting from its early design stage

6/9/2021

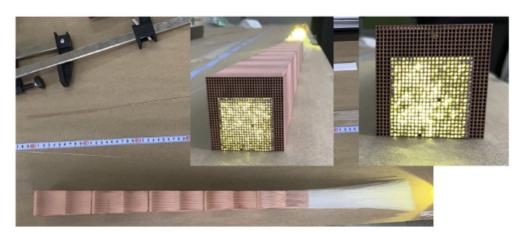

2021 RHIC/AGS Users Meeting


https://indico.bnl.gov/event/11517/

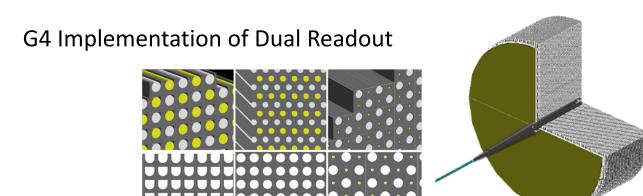
ECCE

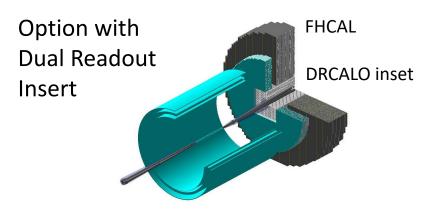
PID DWG Progress

- PID DWG has recently presented updates on progress towards Fun4All performance studies:
 - LGAD TOF available for evaluation in Fun4All
 - Progress implementing dRICH and hpDIRC in Fun4All
 - Optimizing mRICH in Fun4All
- Recognize need to properly pass PID info within Fun4All
- Visualization of ECCE PID concept from talk with Wei Li (Rice)
- PID from TOF using LGAD detectors (shown with electron, muon, pion, kaon, & proton).



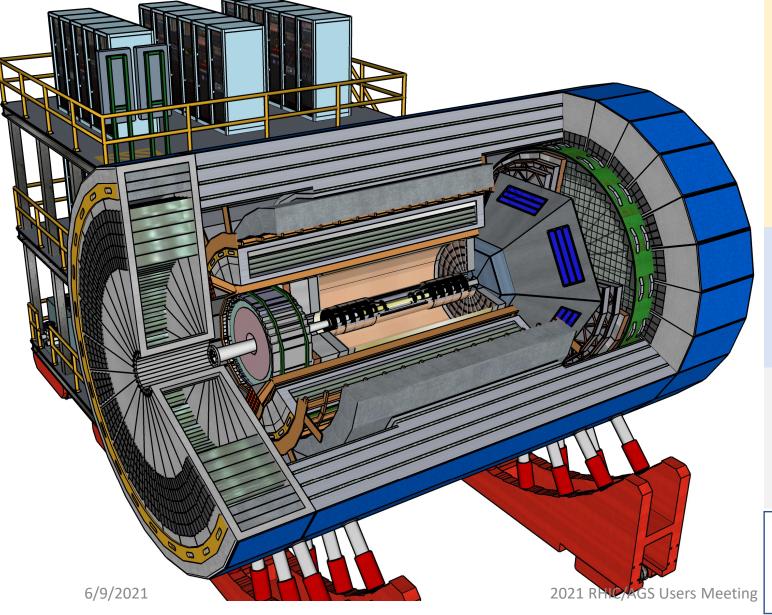
Calorimetry DWG Progress




- Calorimetry DWG has recently presented updates on emerging primary options:
 - Insert Dual Readout with 3D printing for forward calorimetry, surrounded by standard
 - ECAL and longitudinally-segmented HCAL
 - Re-use for Backward HCAL and Barrel HCAL
 - SciGlass for Barrel ECAL
 - Hybrid SciGlass/PbWO for Backward ECAL
 - Further details available here:
 - https://indico.bnl.gov/event/11915/
 - https://indico.bnl.gov/event/11917/

Example 3D printed Dual Readout Calorimeter

Working on arranging mechanical engineering help at ORNL for some aspects.



ECCE Design Status

- DWGs proceeding with evaluation of leading technology alternatives.
- Converging on initial setup for first IP6 simulations campaign starting next week!
- Detector Team Group Meeting June 10th 11am to 2pm:
 - co-conveners will present latest evaluated technology options,
 - Focus on detectors choices to move forward with DAQ and determining optimal re-use,
 - https://indico.bnl.gov/event/12079/
- Still need to optimize performance / cost / risk with inputs from simulations.

ECCE Detector (W.I.P.)

Black = still being discussed

ELECTRON ENDCAP

Tracking: GEM / MPGD

Electron Detection:

- Inner part: PWO crystals (reuse some)
- Outer part: SciGlass (backup PbGI)

h-PID: mRICH & AC-LGAD

HCAL: Steel from magnet or Fe/Sc

- ➤ Not instrumented and only serve as flux return?
- Instrumented \w reduced thickness (lower energies)

CENTRAL BARREL

<u>Tracking:</u> Silicon barrel + forward tracker (optional Si/GEM hybrid)

<u>Electron PID:</u> SciGlass (backup: PbGl or W(Pb)/Sc shashlik)

<u>h-PID:</u> hpDIRC & AC-LGAD/LYSO [progress: DIRC orientation]

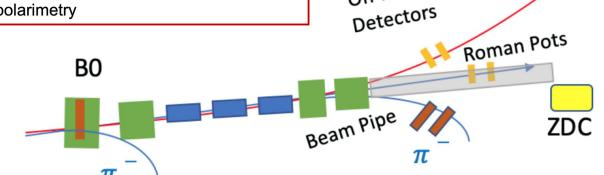
HCAL: magnet steel (reuse) - Fe/Sc

HADRON ENDCAP

Tracking: GEM / MPGD
PID: dual-RICH & AC-LGAD

Calorimetry: standard W/ScFi + Fe/Sc

Upgrade: Dual Readout EM+Had Cal?

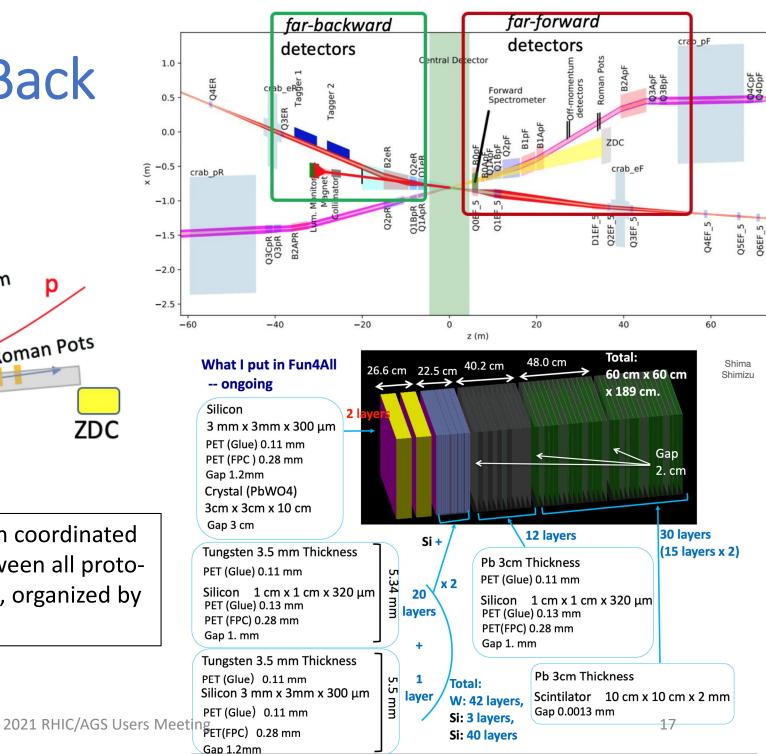

Example discussions:

- Backup for AC-LGAD in barrel
- SciGlass ongoing R&D timeline
- Hadron Endcap calorimetry

ECCE Far Forward / Back

FAR FORWARD DETECTORS

- ZDC Si/W & PWO (SciGlass)
- Roman Pots Silicon sensors, AC-LGADs
- Off-momentum det. Silicon sensors
- B0-trackers **MAPS & timing layers** Lepton polarimetry hadron polarimetry

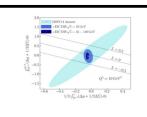


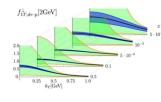
FAR BACKWARD DETECTORS

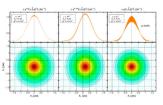
- low-Q2 tagger
- Lumi-detector
 Lepton polarimetry
 hadron polarimetry

Participating in coordinated meetings between all protocollaborations, organized by EIC PM.

Off-Momentum

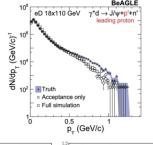

ECCE Physics Studies Focus: A First Look

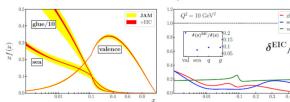


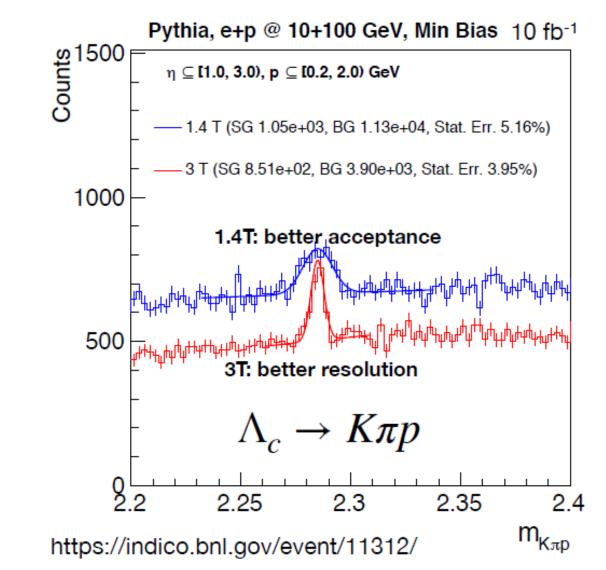

Studies to demonstrate EIC NAS Study, **Yellow Report physics**

- Origin of Nucleon Spin
- Confined motion of partons
- 3D imaging quarks and gluons
- Nucleon mass
- High gluon densities in nuclei
- Quarks and gluons in the nucleus

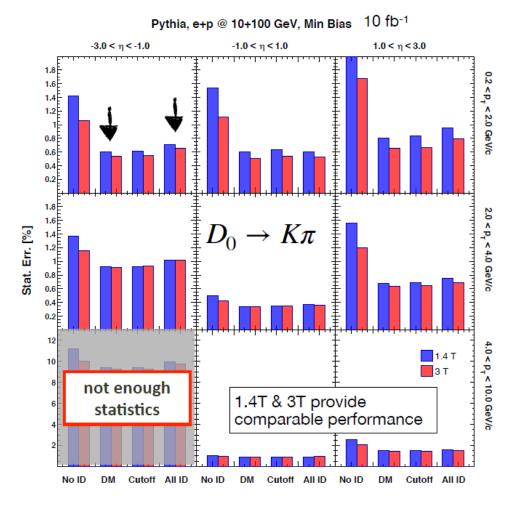
6/9/2021





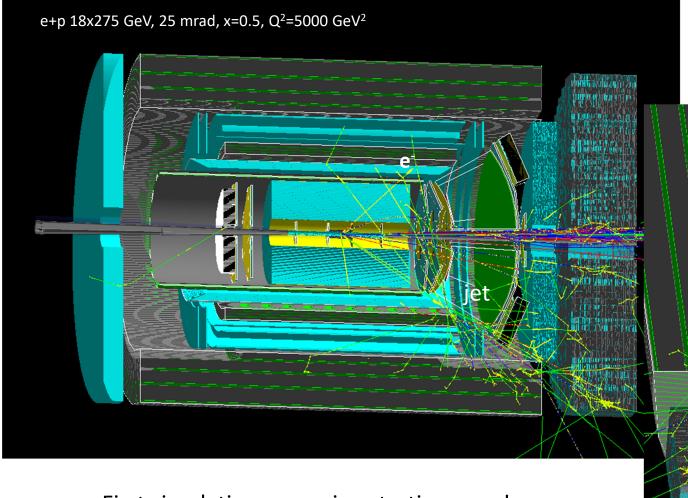

- Light-ion tagging
- Pion/Kaon structure

- Diffractive jets?
- Nuclear modifications and in-medium evolution
 - D/D* reconstruction and heavyflavor in jets.



Recent Study by Wenqing Fan (LBNL)

- Fast simulation of PID, based on YR specifications
- Parallel effort ongoing with full detector G4 simulations



G4 Simulations

https://ecce-eic.github.io

ECCE leverages the fun4all framework already used extensively for sPHENIX

First simulation campaign starting soon!

beam remnants propagating

through pipe w/25 mrad

crossing angle

- ☐ May 20th July 1st [~1.5 months]:
 - First simulation campaign with a few detector configurations & initial analysis.
 - Detector baseline set ~June 14th, first 10M event simulation campaign
 - Debug the many things that won't go right the first time :)
- ☐ July 1st Aug. 1st [1 month]:
 - Large scale simulations production
 - Drafting 'collaboration structure' part of the proposal by writing team.
- ☐ Aug. 1st Sep. 15th [1.5 months]:
 - Analysis of simulation data to demonstrate physics extraction.
 - Presentation at August 2-6 EIC UG meeting
- ☐ Sep. 15th Nov. 1st [1.5 months]:
 - All physics 'plots' are done.
 - Final evaluation of technology selection based on physics studies results.
 - Compose narrative around simulation results and selected technologies.
- □ Nov. 1st Nov. 30th [1 month]:
 - Proposal review by external colleagues.
 - Final edits

Conclusions

- The ECCE consortium is 77 institutions (& growing) working to design the EIC project detector based around the BaBar solenoid
- By reducing cost and risk, ECCE plans to be ready for physics by EIC CD4a, as soon as possible at the start of machine operations.
- The physics program spans the entirety of that outlined in the NAS study and the Yellow Report
- The detector design process is fully underway, in tandem with a wide range of full physics simulations

https://ecce-eic.org