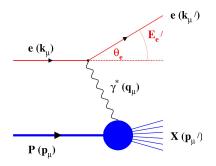
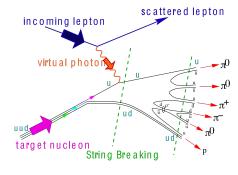


Experimental Measurement Categories to address EIC Physics


Parton
Distributions in
nucleons and
nuclei

QCD at Extreme Parton Densities -Saturation Spin and Flavor structure of nucleons and nuclei

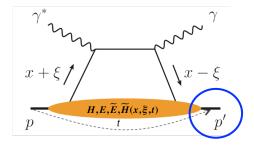
Tomography
Transverse
Momentum Dist.


QCD at Extreme Parton Densities -Saturation

Tomography Spatial Imaging

inclusive DIS

- measure scattered lepton
- multi-dimensional binning: x, Q²
 - → reach to lowest x, Q² impacts Interaction Region design
 - → low mass detectors, excellent e/h separation



semi-inclusive DIS

- measure scattered lepton and hadrons in coincidence
- multi-dimensional binning:

$$x$$
, Q^2 , z , p_T , ϕ

→ particle identification over entire region is critical

exclusive processes

- measure all particles in event
- multi-dimensional binning:

$$x$$
, Q^2 , t , ϕ

- proton p_t: 0.2 1.3 GeV
 - → cannot be detected in main detector
 - → strong impact on Interaction Region design

10 - 100 fb⁻¹

Ldt: 1 fb⁻¹

10 fb⁻¹

machine & detector requirements

Detector General Requirements

EIC physics measurements require a detector with unique capabilities

- Large rapidity (-4 < η < 4) coverage; and far beyond in especially far-forward detector regions
- ☐ High precision low mass tracking
 - o small (μ -vertex) and large radius tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EM-calorimetry
- High performance PID to separate π , K, p on track level
 - o also need good e/π separation for scattered electron
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program
 - Many ancillary detector integrated in the beam line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter,
- High control of systematics
 - o luminosity monitor, electron & hadron Polarimetry

Integration into Interaction Region is critical

EMCal

Goals:

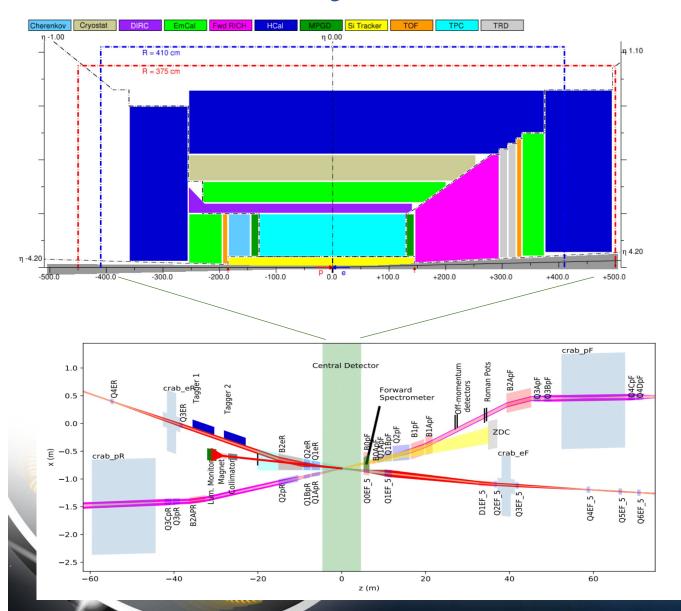
- DIS kinematics (through scattered electron)
- Decay electrons
 (e.g. from vector mesons and HF)
- Photons (e.g. from DVCS)
- π0
 (e.g. from SIDIS or exclusive DIS)

Challenges:

- Dynamic Range
- Energy resolution (particularly at high $|\eta|$, high p)
- Charged hadron suppression for eID
- $\gamma/\pi 0$ discrimination (Granularity, projectivity)

Limited space => dense, high granularity, high resolution EMCal

HCal


Goal:

- Jet measurements
- Hadron measurements
- Rapidity gap (tag diffractive events)

Challenges:

- Energy resolution (particularly at high $|\eta|$)
- Neutral/Charged cluster discrimination (with help of tracking)

Calorimetry in EIC Detector

Central Detector:

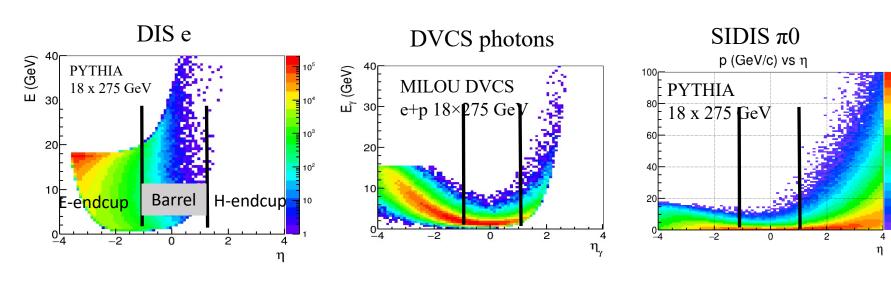
EMCal&HCal: $|\eta|$ <4

Far-Backward:

EMCal for lum. det

EMCal for low Q² tagger

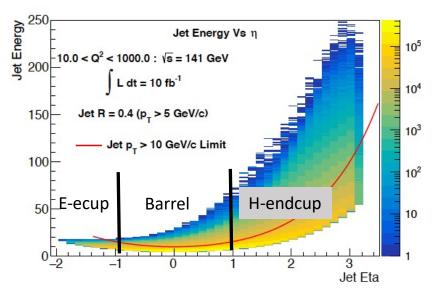
Far-Forward:


ZDC: EMCal&HCal

EMCal/PS at BO?

Space is at premium everywhere

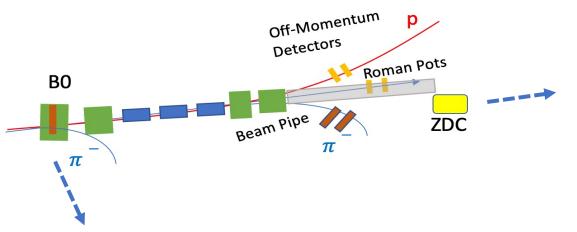
Electron-Ion Collider

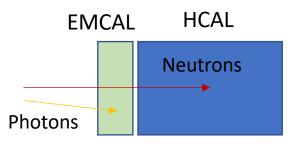

EMCal in Central Detector

	E-endcup -4<η<-2	E-endcup -2<η<-1	Barrel η <1	H-endcup 1<η<4	
Resolution , $\frac{\sigma_E}{E}$	$\frac{2\%}{\sqrt{E}}$ \bigoplus (1-3)%	$\frac{7\%}{\sqrt{E}} \oplus (1-3)\%$	$\frac{10-12\%}{\sqrt{E}} \bigoplus (1-3)\%$	$\frac{10-12\%}{\sqrt{E}} \bigoplus (1-3)\%$	Important to minimize const term
Min E, GeV	0.1	0.1	0.1	0.1	To measure decays
Granularity, Δθ	<0.02	<0.02	<0.025	<0.01	Defines $\gamma/\pi 0$ discr., helps for e/π
Projectivity	Desirable	Desirable	Yes	Desirable	Affects $\gamma/\pi 0$ discr and pos. res
Avail. space	Δz=60cm	Δz=60cm	Δr=30cm	Δz=40cm	Including all services

HCal in Central Detector

Jacquet-Blondel for DIS kinematics


$$Q_{JB}^{2} = \frac{p_{T,h}^{2}}{1 - y_{JB}} \qquad p_{T,h}^{2} = \left(\sum_{h} p_{x,h}\right)^{2} + \left(\sum_{h} p_{y,h}\right)^{2}$$

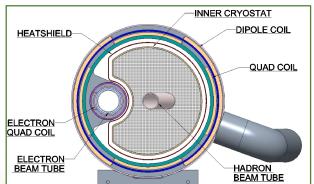

$$y_{JB} = \frac{\left(E - p_{z}\right)_{h}}{2E_{e}} \qquad (E - p_{z})_{h} = \sum_{h} \left(E_{h} - p_{z,h}\right)$$

$$x_{JB} = \frac{Q_{JB}^{2}}{Sy_{JB}} \qquad \text{All hadrons need to be reconstructed}$$
• n and K_L only in HCal

	E-endcup -4<η<-1	Barrel η <1	H-endcup 1<η<2.5	H-endcup 2.5<η<4	
Resolution , $\frac{\sigma_E}{E}$	$\frac{50\%}{\sqrt{E}} \oplus 6\%$	$\frac{85\%}{\sqrt{E}} \oplus 7\%$	$\frac{50\%}{\sqrt{E}} \oplus 6\%$	$\frac{35\%}{\sqrt{E}} \oplus 5\%$?	
Min E, GeV	0.5	0.5	0.5	0.5	To minimize bias in jets, and JB kinematics reco
Granularity, cm ²	10×10	10×10	10×10	10×10	To separate charged from neutrals
Avail. space	Δz=~100cm	Δr=120cm	Δz=120cm	Δz=120cm	Including all services

EMCal & HCal in Far-Forward

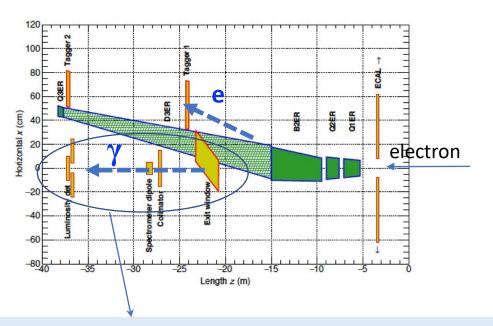
 θ < 5.5 mrad

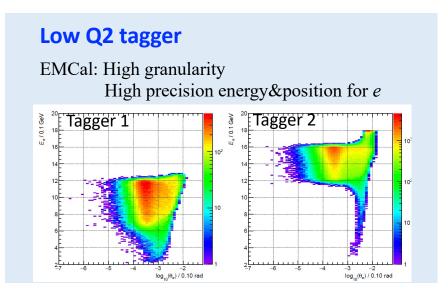

 $0.6 \times 0.6 \times 2 \text{ m}^3$

HCal:
$$\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}} \oplus 5\%$$

$$\sigma_{ heta} \sim rac{3\ mrad}{\sqrt{E}}$$

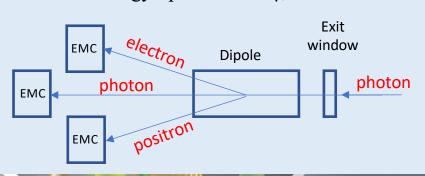
EMCal: γ down to 0.1 GeV

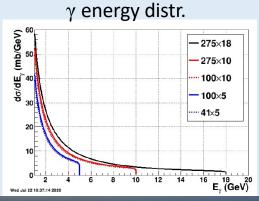

High res, e.g. PWO

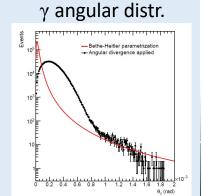


 $5.5 < \theta < 20 \text{ mrad}$ Tracking EMCal/PS

~Continuous coverage from central to far-forward region is anticipated


EMCal in Far-Backward





Luminosity Detector: $e + p \rightarrow e + p + \gamma$

EMCal: energy&position for γ , e- and e+

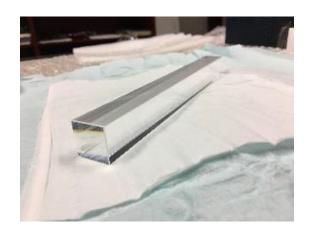
YR: Detector options

system	system components	reference detectors	detectors, alternative options considered by the community							
	vertex	MAPS, 20 um pitch	MAPS, 10 um pitch							
tracking	barrel	TPC	TPC ^a	MAPS, 20 um pitch	MICROMEGAS ^b					
tracking	forward & backward	MAPS, 20 um pitch & sTGCs ^c	GEMs	GEMs with Cr electrodes						
	very far forward	MAPS, 20 um pitch & AC-LGAD ^d	TimePix (very far backward)							
	& far backward									
	barrel	W powder/ScFi or Pb/Sc Shashlyk	SciGlass	W/Sc Shashlyk						
	forward	W powder/ScFi	SciGlass	PbGl	Pb/Sc Shashlyk or W/Sc Shashlyk					
ECal	backward, inner	PbWO ₄	SciGlass							
	backward, outer	SciGlass	PbWO ₄	PbGl	W powder/ScFi or W/Sc Shashlyk ^e					
	very far forward	Si/W	W powder/ScFi	crystals ^f	SciGlass					
h-PID	barrel	High performance DIRC & dE/dx (TPC)	reuse of BABAR DIRC bars	fine resolution TOF						
	forward, high p	double radiator RICH (fluorocarbon gas, aerogel)	fluorocarbon gaseous RICH	high pressure Ar RICH						
	forward, medium p	double faciator Rich (hubbocarbon gas, acroger)	aerogel							
	forward, low p	TOF	dE/dx							
	backward	modular RICH (aerogel)	proximity focusing aerogel							
	barrel	hpDIRC & dE/dx (TPC)	very fine resolution TOF							
e/h separation	forward	TOF & areogel								
at low p	backward	modular RICH	adding TRD	Hadron Blind Detector						
	barrel	Fe/Sc	RPC/DHCAL	Pb/Sc						
HCal	forward	Fe/Sc	RPC/DHCAL	Pb/Sc						
	backward	Fe/Sc	RPC/DHCAL	Pb/Sc						
	very far forward	quartz fibers/ scintillators								

^a TPC surrounded by a micro-RWELL tracker

^b set of coaxial cylindrical MICROMEGAS

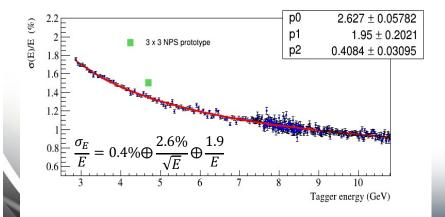
^c Small-Strip Thin Gas Chamber (sTGC)


d MAPS for B0 and off-momentum poarticles, LGAD for Roman Pots

^e also Pb/Sc Shashlyk

^f alternative options: PbWO₄, LYSO, GSO, LSO

Homogeneous EMCal: PbWO₄


eRD1: T.Horn

Scintillating light => photo sensor

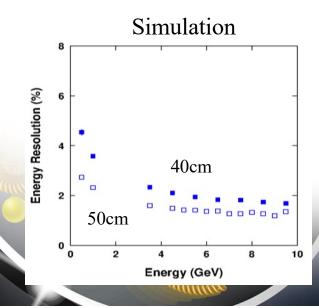
$$X_0 = 0.9 \text{cm}$$
 => Compactness
 $R_m = 2 \text{cm}$ => High granularity
 $\frac{\sigma_E}{E} = (0.4 - 1)\% \oplus \frac{(2-3)\%}{\sqrt{E}}$ => High resolution
>1000 krad => Radiation hard
 $d(LY)/dT = -(2-3)\%/C => Temperature sensitive$

Jlab-PrimEx eta/NPS PWO EMCal prototype

An ideal EMCal for EIC Detector

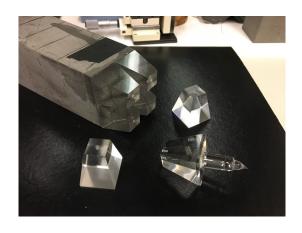
Homogeneous EMCal: SciGlass

eRD1: T.Horn


Scintillating light => photo sensor

- Scaling up to $\sim 20 X_0$ in 2021

 With acceptable mechanical and optical properties
- > Test beam in 2021
- ➤ Prepare for the large scale production


Alternative to high resolution (expensive) EMCal

	PWO	SciGlass			
X0, cm	0.9	2-3			
Rm, cm	2.0	2.2 – 2.8			
$\frac{\sigma_E}{E}$, %	$(0.4-1)\% \oplus \frac{(2-3)\%}{\sqrt{E}}$	Similar for the same length in X ₀			
Rad. Tolerance, krad	>1000	>1000			
d(LY)/dT, %/°C	2-3	0			



Sampling EMCal: W/SciFi

eRD1: C.Woody & O.Tsai

BNL-sPHENIX: W/SciFi

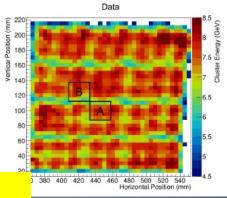
Light generated in scintillating fibers, embedded in an absorber (W/epoxy mix), is transported to photo sensor

sPHENIX barrel EMCal:

 \triangleright Compact: $X_0 = 0.7$ cm

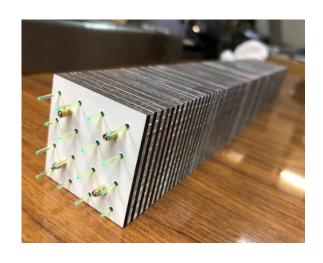
 \rightarrow High granularity: $R_m = 2cm$

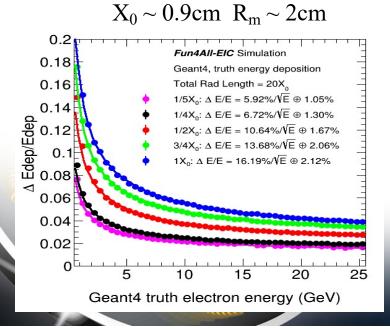
➤ Sampling fraction: ~2.3%


➤ Modest resolution

Can be improved by increasing the sampling fraction, at the expense of larger X_0 and R_m

R&D:


Improve light collection eff. and uniformity


Close to satisfy EIC Detector requirements in barrel and forward region

Sampling EMCal: W/Sc shashlik

eRD1: C.Woody&E.Kistenev

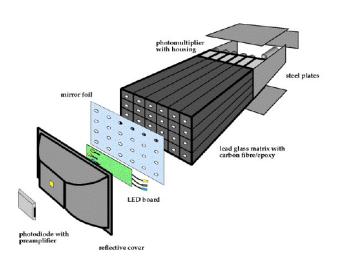
Light generated in scintillating tiles transported through the WLS fibers to photo sensors

- > Each fiber readout by its own SiPM
- More detailed info on shower development within a tower

Improve position resolution

Improve energy res. (const term)

May improve $\gamma/\pi 0$ discrimination


➤ Tunable resolution through the change of sampling fraction and/or frequency:

$$\frac{\sigma_E}{E} = (1-2)\% \oplus \frac{(6-16)\%}{\sqrt{E}}$$

> Test beam data in 2021

Satisfies EIC Detector requirements everywhere except for the most backward region

Refurbish existing EMCals

PbGl

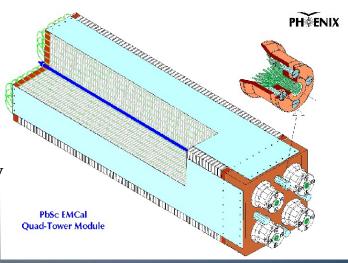
A lot of modules from previous experiments:

$$\frac{\sigma_E}{E} \sim \frac{6\%}{\sqrt{E}} \oplus 1\%$$

Good e/π separation

 \Rightarrow Good candidate for e-endcup (η >-2)

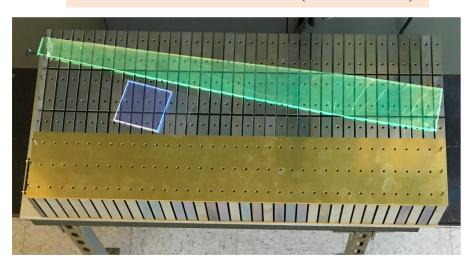
PbSc-Shashlik

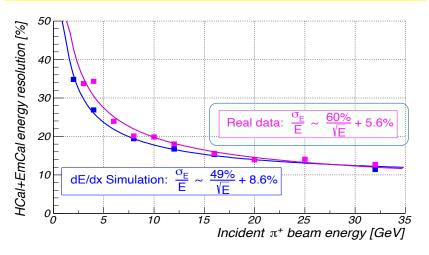

 \sim 15k towers from PHENIX (5.5×5.5 cm²)

$$\frac{\sigma_E}{E} \sim \frac{8\%}{\sqrt{E}} \oplus 2\%$$

Each fiber readout would make it of high granularity

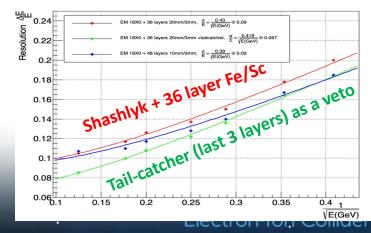
Shower core is << R_m!


=> Good candidate for h-endcup


Sampling HCal for endcup

eRD1: O.Tsai

BNL-fSTAR: Fe/Sc HCal (20mm/3mm)

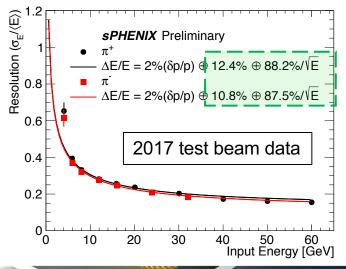


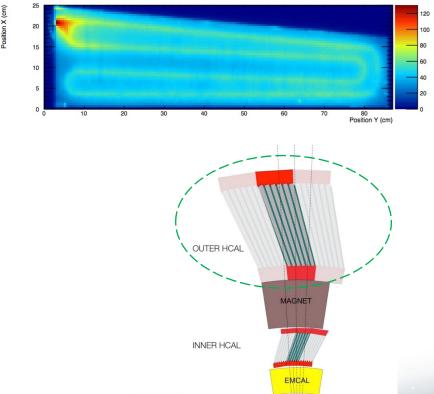
Close to satisfy EIC Detector requirements everywhere except for the most forward region

Tail-Catcher as a veto

Shashlyk + 36 layers Fe/Sc (20mm/3mm), Energy Resolution

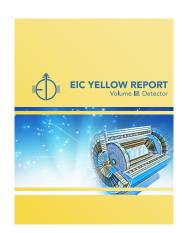
Tail-Catcher (to mitigate long. leakage fluctuations)


- > Improves the energy resolution
- Detection efficiency loss
 10% loss for 6 GeV pions
 50% loss for 60 GeV pions


Sampling HCal for barrel

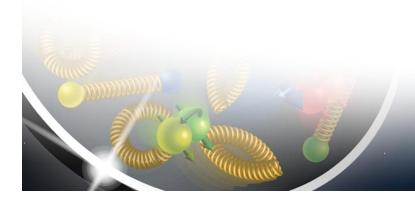
BNL-sPHENIX: Fe/Sc HCal

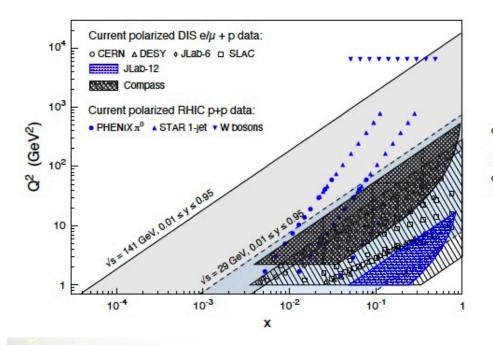
Scintillator plate with embedded WLS fiber

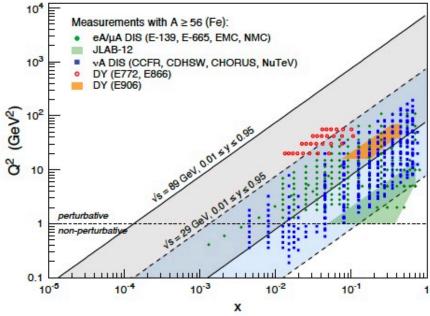

Close to satisfy EIC Detector requirements in barrel

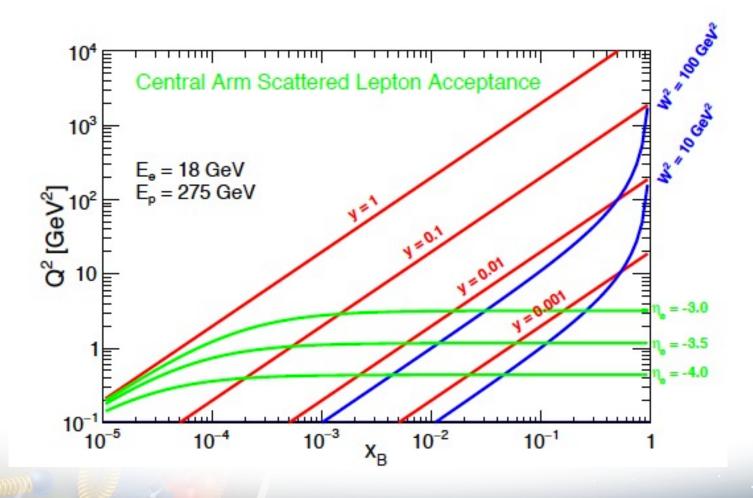
Summary

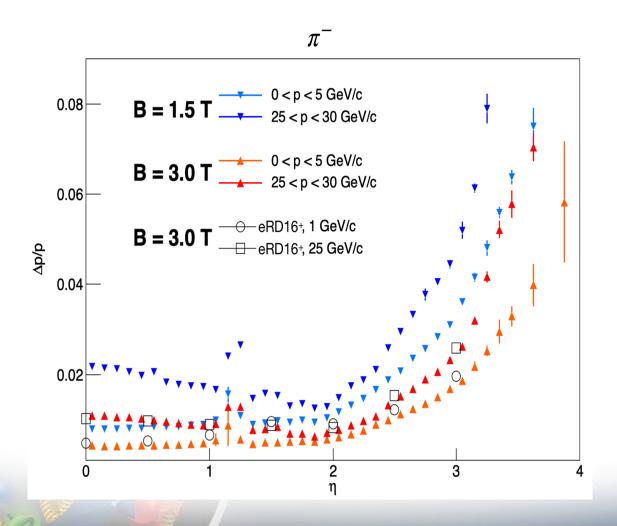
arXiv:2103.05419



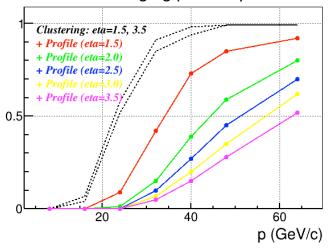

- > Detector requirements defined by YR Physics Working groups
- ➤ All requirements initially defined for EMCal can be satisfied with the existing technologies
 - Different technologies can be used in each kin. regions
 - Space is at premium; larger space would allow more options
 - Active R&D for different technologies
 - Existing EMCals to refurbish
 - Preshower may help to enhance EMCal capabilities


Backup




YR: Detector Requirements

η		Nomenclature		Tracking			El	Electrons and Photons		π/K/p PID		HCAL		Muons	
	Nomenciature			Min p _T	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	Resolution σ _E /E	Muons
-6.9 — -5.8			low-Q ² tagger		δθ/θ < 1.5%; 10-6 < Q ² < 10-2 GeV ²										
	↓ p/A	Auxiliary													
4.5 — -4.0	† bird	Detectors	Instrumentation to												7
-4.0 — -3.5			separate charged particles from γ											~50%/√E+6%	
3.5 — -3.0									2%/√E+						
-3.0 — -2.5					$\sigma_p/p \sim 0.1\% \times p+2.0\%$		σ _{xy} ~30μm/p _T + 40μm		(1-3)%						
2.5 — -2.0			Backwards Detectors				40μm	1				~45%/√F	~45%/√E+6%		
2.0 — -1.5				Detectors		a /n = 0.05% vn+1.0%		σ _{xy} ~30μm/p _T +	L		0			40,0,, 12.0	4070/12:070
1.5 — -1.0					σ _p /p ~ 0.05%×p+1.0%	~5% or less	20µm		7%/√E+ (1-3)%	π	≤ 7 GeV/c	≥ 3σ			% Useful for bkg, improve resolution
1.0 — -0.5								MeV	(1.57.5	suppression up to 1:104			~500 MeV ~85%/√E+7% ~35%/√E		
-0.5 — 0.0				Barrel 100 MeV π 135 MeV K	$\sigma_p/p \sim 0.05\% \times p + 0.5\%$		5% or d ₀ (z) ~ 20 μm, d ₀ (z) ~ d ₀ (rφ) ~ 20/p _T GeV μm + 5 μm								
		Central	Barrel											~85%/√E+7%	
0.0 — 0.5		Detector									≤ 10 GeV/c				
0.5 — 1.0											≤ 15 GeV/c				
1.0 — 1.5					σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30μm/p _T + 20μm		(10-12)%/ √E+(1-3)%		≤ 30 GeV/c				
1.5 — 2.0			Forward Detectors						VE (1-5)70						
2.0 — 2.5										3σ e/π	≤ 50 GeV/c			~35%/√F	
2.5 — 3.0					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30μm/p _T + 40μm σ _{xy} ~30μm/p _T + 60μm				≤ 30 GeV/c				
3.0 — 3.5											≤ 45 GeV/c				
3.5 — 4.0			Instrumentation to separate charged particles from y				оории								
4.0 — 4.5															
	↑e	Auxiliary													
> 6.2		Detectors	Proton Spectrometer		σ _{intrinsic} (t)/ t < 1%; Acceptance:										

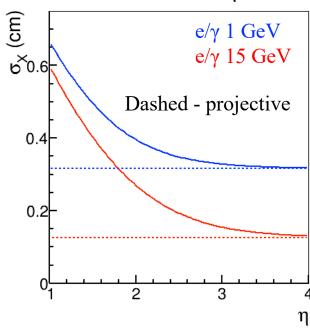


EMCal: Projectivity

Significant loss of $\gamma/\pi 0$ discrimination power at lower rapidity in non-projective EMCal

GEANT4:

Forward EMCal with granularity \sim 0.008 (2.5×2.5 cm² at z=3m)


$$\sigma_X(E,\theta_X) = \sigma_X(E,0^0) \oplus d\sin(\theta_X)$$

For projective geometry

"Non-projectivity" term (from long. shower fluct.) $d\sim X_0$

Position resolution is dominated by "non-projectivity" term

Pos. res. vs η

