Updates on Development of CAD Interface to Detector Simulation

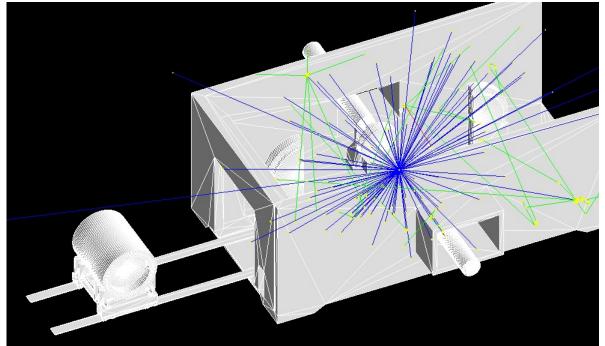
Makoto Asai (SLAC) Jan Bernauer (Stony Brook) Wouter Deconinck (Manitoba) April 21st, 2021

- Motivation
 - Because of the complexity of the detector accelerator integration we need to convert the output of the CAD program to Geant4-readable geometry.
 - We need to do this for full 3D design drawings with parametric surfaces, not some simple EIC IR toy
 models of CSG shapes, that is not good enough for detailed simulation.
- Key work items
 - 1. Conversion of CAD STEP file to GDML file
 - 2. Material composition
 - 3. Vacuum volume
- We launched the effort
 - Starting with the work item #1
 - Studying items #2 and #3 in parallel

Conversion of CAD STEP file to GDML file

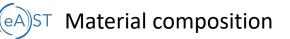
- We need to develop an automated way to convert CAD file to GDML.
- CAD file format : STEP (STL, PLY)
 - Available for most, if not all, of CAD tools used for EIC accelerator design studies
- STEP to GDML conversion tool
 - Most promising : MRADSIM
 - http://mc-infn.lns.infn.it/?action=Geant4/MRADSIM_Converter
 - New free tool developed by INFN Perugia. Need evaluation.
 - Alternative : CADMesh
 - Converting one solid at a time known volume overlap issue if two solids are touching to each other with their curved surfaces.
 - There are some commercial tools to evaluate as a backup
- Is tessellation good enough?? Or, too good???
 - NURBS can be converted to Tessellated solid. If tessellated solid is good enough, we want to avoid using NURBS in simulation geometry.
 - NURBS is more accurate, but harder to deal with.
 - Not fully convertible to GDML. Manual conversion to some Geant4-native solids, including Extruded solid, may be required.
 - Granularity of facets may need to be optimized.

A ST Sample GDML for preliminary benchmarking

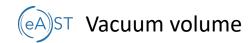

File	CSG (hand-written)	Tessellated solids (Commercial converter)	Tessellated solids (MRADSIM converter)
File size	2,423 Byte	2,575,524 Byte	3,427,771 Byte
200,000 geantino's 12 threads			Many warning messages from GDML Parser
Total time (within event loop)	User=9.120000s Real=0.822846s Sys=0.060000s [Cpu=1115.6%]	User=44.090000s Real=3.821735s Sys=0.120000s [Cpu=1156.8%]	User=47.060000s Real=4.059320s Sys=0.110000s [Cpu=1162.0%]
Total memory	120 MB	107 MB	122 MB

SL/

- MRADSIM is very promising
 - Developer team is very responsive!
 - Few issues identified and reported to the developers. Some of them have already been addressed.
- As a backup solution, a commercial tool is confirmed.
- Thanks, Elke, for sample STEP files.
- As a preliminary measurement, navigating tessellated solid is ~5 times slower than simple CSGs
 - With physics interactions, difference should be much smaller.
 - Further study is required with tuning granularity of facets.



EIC_model.gdml converted by a commercial tool and simulated by Geant4-based application


Development of CAD Interface to Detector Simulation M. Asai (SLAC), J. Bernauer (Stony Brook), W. Deconinck (Manitoba)

- CAD file often specifies the material just by name.
 - Sometimes there is no material description at all.
- Geant4 simulation (in particular, hadronic physics models) requires isotope-level material composition.
- A material composition table (database) is required.
 - Mapping volume name and material name to isotope-level composition
 - Additional GDML file or another format?
- Need to develop a tool
 - To modify the input GDML file,
 - Or, to set materials after reading GDML into Geant4

- CAD usually defines volumes that are to be crafted, e.g. beam pipe, but does not describe vacancy, e.g. vacuum inside the beam pipe.
- Geant4 requires solid to represent a material. Thus, we need a dedicated volume for vacuum.
 - If the beam pipe is a simple tube, we can easily define a cylinder that touches to the inner surface of the beam pipe tube.
 - But now our beam pipe is complicated tessellated solid. Each facet is not obviously representing inner or outer surface.
- We need to develop (hopefully) an automated mechanism to create a vacuum volume. Some ideas to study/evaluate.
 - Generating an envelope mother volume.
 - Envelope is filled by vacuum, placing the actual beam pipe in it.
 - Envelope is filled by vacuum and placed in a parallel world.
 - Create some voxels, fill them with vacuum and place in a parallel world.
 - Create some simplified volumes with CSG, fill them with vacuum and place in a parallel world. Manual creation needed.

