
The Rucio File Catalog in DIRAC implemented for Belle II1

Cédric Serfon 1,∗, John Steven De Stefano Jr 1, Michel Hernández Villanueva 2, Hi-2

ronori Ito1, Yuji Kato3, Paul Laycock 1, Ruslan Mashinistov1, Hideki Miyake4, and Ikuo3

Ueda4
4

1Brookhaven National Laboratory, Upton, NY, USA5

2University of Mississippi, MS, USA6

3KMI - Nagoya University, Nagoya, Japan7

4High Energy Accelerator Research Organization (KEK), Japan8

Abstract. DIRAC and Rucio are two standard pieces of software widely used in9

the HEP domain. DIRAC provides Workload and Data Management function-10

alities, among other things, while Rucio is a dedicated, advanced Distributed11

Data Management system. Many communities that already use DIRAC have12

expressed their interest in using DIRAC for Workload Management in combi-13

nation with Rucio for Data Management. In this paper, we describe the integra-14

tion of the Rucio File Catalog into DIRAC that was initially developed for the15

Belle II collaboration.16

1 Introduction17

DIRAC (Distributed Infrastructure with Remote Agent Control) [1] is a piece of software18

initially developed for the LHCb collaboration [2]. It is designed as "interware" as it provides19

a complete solution for managing distributed resources. Among the various functionalities of20

DIRAC, one can find a Workload Management System and a Distributed Data Management21

system. On the other hand, Rucio [3] is a Distributed Data Management system. Initially22

developed by the ATLAS collaboration [4], Rucio has quickly gained popularity outside AT-23

LAS due to its advanced features. Both DIRAC and Rucio [5] are now used by a large24

community beyond their initial collaboration. In recent years, some communities have ex-25

pressed interest in using DIRAC for Workload Management in combination with Rucio for26

Distributed Data Management. The Belle II collaboration [6] developed a Rucio File Cata-27

log (RFC) plugin for its extension of DIRAC called BelleDirac [7]. In section 2, this article28

details some of the differences between the RFC plugin and the file catalog plugins already29

implemented in DIRAC. Section 3 details all the methods that have been implemented and30

presents differences with respect to the other catalogs.31

2 DIRAC and File Catalogs32

For experiments using distributed computing resources it is often the case that there will be33

multiple copies, or replicas, of files across the different computing sites. An obvious example34

∗e-mail: cedric.serfon@cern.ch

https://orcid.org/0000-0001-7658-4901
https://orcid.org/0000-0002-9986-3919
https://orcid.org/0000-0002-6322-5587
https://orcid.org/0000-0002-8572-5339


is that all experiments ensure that there is a copy of the precious raw detector data, but there35

may be multiple copies of processed outputs to allow those data to be used at multiple sites at36

the same time. File catalogs provide a means to provide coherent access to file replicas. Each37

file in the catalog has a Logical File Name (LFN) and each LFN can have a list of associated38

Physical File Names (PFN) that correspond to the physical copies of the files at different39

sites. If an application or a user wants to locate a particular LFN, then they simply query the40

catalog to get the list of associated file replicas.41

2.1 File catalogs supported by DIRAC42

DIRAC provides a File Catalog interface to the actual file catalog service, more details about43

that interface are described in section 3. To interact with a particular file catalog service, a44

plugin that implements the methods defined in the File Catalog interface is needed. Before45

the implementation of the RFC plugin, two file catalogs were supported by DIRAC:46

• The first one is an external catalog called the LCG (LHC Computing Grid) File Catalog47

(LFC) [8]. It is a hierarchical catalog that allows one to organise the files into a directory48

structure. The LFC only contains the file replica information and very limited metadata49

including the checksum and the file size.50

• The DIRAC File Catalog (DFC) is another catalog internal to DIRAC. In contrast to the51

LFC, the DIRAC File Catalog combines both replica and metadata functionality [9].52

2.2 Differences between Rucio and the LFC53

The Belle II collaboration previously used the LFC and wanted to maintain the same func-54

tionality and behaviour. The RFC plugin was designed to meet that goal with some slight55

differences listed below:56

• Whereas the LFC is inherently hierarchical, Rucio uses by default a flat namespace with57

files contained in datasets which are a collection of files, but the datasets are not connected58

to one another. Rucio has another type of data structure called containers which are a59

collection of datasets and/or containers. Containers cannot contain files. Using containers,60

it is then possible to reproduce the directory structure of the LFC (see figure 1) with the61

constraint that directories cannot contain a mixture of files and directories. This same62

constraint was introduced into Belle II Software to prevent users from encountering this63

feature.64

• Rucio has the concept of scope : The scope is a way to partition the Rucio namespace and65

to apply different policies, permissions, etc. Every Data IDentifier (DID) which represents66

a file, dataset, or a container, has a scope and the DID name must be unique within the67

scope. Since there is no concept of scope in the LFC, it needs to be hidden from end-users68

and applications. To achieve this, a deterministic function uses the LFN to associate each69

LFN to a unique scope in a transparent way.70

• Another big difference is related to the Rucio concept of replication rules. The replication71

rules are a way to describe how a DID must be replicated on a list of Rucio Storage Ele-72

ments (RSE). If a rule is created for a particular DID on certain RSE, Rucio will ensure73

that the rule is fulfilled either by locking the DID at the specified RSE if it is already there,74

or by transferring and then locking it to the specified RSE. This difference has important75

consequences for deletion as explained in subsection 3.3.76

• Finally there is no concept of fine-grained Access Control List (ACL) on files or directories77

in Rucio, contrary to the LFC. In Rucio, permissions are managed at the scope level, and78

all of the files in the same scope have the same permissions.79



Figure 1. Schema showing how the data are structured in Rucio to reproduce the LFC hierarchy. The
orange boxes represent files, bluish green boxes represent datasets that can only contain files, and sky
blue boxes are containers that can only contain datasets and other containers. The first part of the name
before the colon represents the scope and is associated uniquely to the LFN which follows the colon.

2.3 Differences between Rucio and the DFC80

All the differences listed in section 2.2 also apply to the RFC compared to the DFC. In ad-81

dition, similarly to the DFC, Rucio supports generic metadata. In the DFC, subdirectories82

inherit the metadata of their parent directories and files inherit the metadata of their direc-83

tories. In Rucio it is possible to set any metadata to any DID and children do not inherit84

metadata from their parents.85

3 Rucio file catalog plugin functionality86

DIRAC provides a File Catalog interface that allows users or any other (Belle)DIRAC com-87

ponent to interact with the file catalog service. It provides several different methods which88

can be categorised as:89

• Read methods: To list the content of a directory, to get stats about files or directories, to get90

the list of PFN (replicas) associated with one LFN, and many other methods.91

• Write methods: To create new files, and to create new replicas.92

• Delete methods: To delete file replicas (remove a PFN associated to an LFN), or delete a93

file completely, i.e. remove an LFN from the catalog.94

To implement a new catalog plugin, all these methods need to be implemented. One potential95

obstacle to implementing a Rucio file catalog plugin is due to the important concept of scope.96

As mentioned in the previous section, the scope is an unknown concept both for the LFC and97

DFC. Therefore the scope cannot be passed to the catalog method and needs to be extracted98



directly from the LFN. This is done with the help of a deterministic function that maps each99

LFN to one and only one scope.100

The current implementation of the RFC plugin only contains the replica methods that101

are available in both the LFC and the DFC, but not the metadata methods that are unique102

to the DFC. In order to use the RFC plugin, the Rucio clients need to be installed on the103

DIRAC server. This can be done using the Python package manager pip. In the future, it104

is foreseen to include the Rucio clients into DIRACOS [10]. To setup the RFC plugin, a105

few environment variables need to be defined in a RucioFileCatalog section of the DIRAC106

Configuration system as shown in figure 2.107

Figure 2. Snapshot of the DIRAC Configuration Service used by Belle II. The RucioFileCatalog section
is a subsection of Resources/FileCatalogs that contains a few environment variables that are used to
setup the Rucio client.

Before starting to use the RFC plugin, the Storage Elements registered in the Resources108

section of the DIRAC Configuration, as well as the users registered in the Registry section,109

need to be created on the Rucio server. In the Belle II case this is done automatically by a110

new DIRAC agent called the RucioSynchronizer that creates the RSE and their associated111

protocols, as well as the user accounts.112

3.1 Read methods113

The following read methods have been implemented: getReplicas, listDirectory,114

getFileMetadata, getFileSize, isDirectory, isFile, getDirectorySize. Using115

the mapping between datasets/containers and directories described in 2, all these methods116

have the same behaviour as the ones in the LFC plugin. They use bulk queries to the Rucio117

server which allows for faster response times in case more than one file is specified. This is118

particularly important considering that the DIRAC server and the Rucio server can be rela-119

tively far away, e.g. for Belle II there is a distance of more than 10000 kilometers between120

the DIRAC servers and the Rucio servers which represents about 180 ms of Round trip Time.121

3.2 Write methods122

There are only two write methods: addFile and addReplica. For addFile a new atomic123

bulk method was added to Rucio. Adding new files involves many operations such as creating124

all of the parent directories if they do not exist, attaching files to the dataset, creating the file125



replicas, and creating a replication rule for the dataset. The whole workflow is described in126

figure 3. Regarding addReplica, the method simply adds a file replica and a replication rule127

for this replica.128

Does the 
parent exist

and contain the
child 

Add the files /belle/.../dir1/file{1..3}
to site RSE1

Does 
/belle/.../dir1

exist

Create the 
parent and attach

child to parent

Create dataset /belle/.../dir1
Create an associated rule

on RSE1
Attach all the files to the dataset

Create all the files
with the associated replicas

on RSE1

Yes

No

No

File successfully registered

Yes

Figure 3. Diagram describing the workflow to add new files at a storage element. The entire procedure
is handled in a new atomic bulk operation on the Rucio server side.

3.3 Delete methods129

There are two delete methods: removeReplica and removeFile. Due to the very different130

concepts between Rucio and the LFC regarding deletion, their behaviour is different in the131

RFC compared to the LFC methods. As explained in section 2, the DID in Rucio are locked132



at a specific site using replication rules. These rules prevent the deletion of a file replica,133

whereas this operation is a valid one for the LFC. Therefore if a file that belongs to a dataset134

has a replica on site A and this dataset has a replication rule on site A, it is impossible to135

remove the replica. Therefore the removeReplica method simply doesn’t do anything in136

the RFC plugin. The removeFile method that removes a file from the namespace also has137

a different behaviour : in the LFC plugin, the command only succeeds if this file has no138

replicas, whereas in the RFC plugin, the file is removed even if replicas exist. Additionally,139

whereas in the LFC case the file deletion from storage is done synchronously, in the RFC the140

file is only logically removed from its parent directory synchronously, while the logical and141

physical deletion of the file itself and from its replicas is done asynchronously by a separate142

Rucio daemon.143

3.4 Future work144

The current implementation only supports the replica functionality and not the metadata func-145

tionality supported by the DFC. The RFC plugin could be extended to also support some146

metadata methods similarly to the DFC as Rucio provides the possibility to store generic147

metadata (key/value pairs). In addition, the plugin that is currently only part of BelleDirac is148

foreseen to be integrated to the generic DIRAC.149

4 Conclusion150

A new Rucio File Catalog plugin has been developed to interface DIRAC with Rucio. The151

plugin is being used successfully by the Belle II collaboration in production. This paper sum-152

marized some of the differences between this new catalog and the other catalogs supported by153

DIRAC: the LCG File Catalog and the DIRAC File Catalog. Once included into the generic154

DIRAC, this new interface should help with the adoption of Rucio with DIRAC by more155

communities.156

References157

[1] Federico Stagni, Andrei Tsaregorodtsev, André Sailer and Christophe Haen, “The158

DIRAC interware: current, upcoming and planned capabilities and technologies“, EPJ159

Web Conf. 245 03035 (2020). doi: 10.1051/epjconf/202024503035160

[2] A. A. Alves, Jr. et al. [LHCb], “The LHCb Detector at the LHC” JINST 3, S08005161

(2008) doi:10.1088/1748-0221/3/08/S08005162

[3] Martin Barisits et al., “Rucio - Scientific data management,” Comput. Softw. Big Sci. 3163

(2019) no.1, 11 doi:10.1007/s41781-019-0026-3164

[4] G. Aad et al. [ATLAS Collaboration], “The ATLAS Experiment at the CERN Large165

Hadron Collider” JINST 3 S08003 (2008) doi:10.1088/1748-0221/3/08/S08003166

[5] Martin Barisits et al., “Rucio beyond ATLAS: experiences from Belle II, CMS,DUNE,167

EISCAT3D, LIGO/VIRGO, SKA, XENON”, EPJ Web Conf. 245 03035 (2020).168

doi:10.1051/epjconf/202024511006169

[6] T. Abe et al., KEK-REPORT-2010-1, arXiv:1011.0352 (2010)170

[7] H. Miyake et al. [Belle-II computing group], “Belle II production system,” J. Phys.171

Conf. Ser. 664 (2015) no.5, 052028 doi:10.1088/1742-6596/664/5/052028172

[8] J.P. Baud, J. Casey, S. Lemaitre and C. Nicholson, “Performance analysis of a file cat-173

alog for the LHC computing grid”, HPDC-14. Proceedings. 14th IEEE International174

Symposium on High Performance Distributed Computing, 2005., Research Triangle175

Park, NC, 2005, pp. 91-99, doi: 10.1109/HPDC.2005.1520941.176



[9] A. Tsaregorodtsev et al. [DIRAC], “DIRAC file replica and metadata catalog”, J. Phys.177

Conf. Ser. 396 (2012), 032108 doi:10.1088/1742-6596/396/3/032108178

[10] M. Petrič, C. Haen and B. Couturier, “DIRACOS: a cross platform solution for grid179

tools”, EPJ Web Conf. 245 (2020), 03020 doi:10.1051/epjconf/202024503020180


	Introduction
	DIRAC and File Catalogs
	File catalogs supported by DIRAC
	Differences between Rucio and the LFC
	Differences between Rucio and the DFC

	Rucio file catalog plugin functionality
	Read methods
	Write methods
	Delete methods
	Future work

	Conclusion

