# Measurement of muon g-2 and EDM

November 4, 2021

**Brookhaven Forum 2021** 



**Tsutomu Mibe** 

Institute of Particle and Nuclear Studies, KEK





### Current status of muon g-2



### Current status of muon g-2



### Muon g-2 theory initiative workshop June 28 – July 2<sup>nd</sup>, 2021

https://www-conf.kek.jp/muong-2theory/

- Organized by the muon g-2 theory initiative (2017-)
- Hosted by KEK IPNS and Nagoya University
- 280 participants from 27 countries
- The white paper (Phys. Rep. 887,1 (2020)) describes the consensus value for the standard model prediction. A good plan for the improvement of the SM prediction has been developed in the workshop.



In memory of Simon Eidelman



Next workshop : Sep. 5-9, 2022 at U. of Edinburgh

# **Muon EDM EDM**( $d_{\mu}$ ) vs $a_{\mu}$ (model independent relation)

Current upper limit  $d_{\mu} < 10^{-19} e^{-10} cm$  (BNL E821)

Complex representation of the dipole moment operator:

$$c_R^{\mu\mu} = -\frac{e}{4m_\mu}a_\mu - i\frac{1}{2}d_\mu \quad \text{Figure}$$

J-PARC and FNAL explore scenarios<sub>20</sub> of the phase region (70-90 deg.)

Future plan at PSI to push down to 10 deg.



5

A. Crivellin et al., PRD 98, 113002 (2018)

### Three steps of g-2 & EDM measurement

1. Prepare a polarized muon beam.

- Store in a magnetic field (muon's spin precesses)
- $\pi^+$ spin spin 0 neutrino: left handed helicity: -1 helicity: -1 B e+
- 3. Measure decay positron

### muon g-2 and EDM measurements

nomentur

In uniform magnetic field, muon spin rotates ahead of momentum due to  $g-2 \neq 0$ 

Spin precession vector w.r.t momentum :





### Improvements in experiment?



History of muon anomaly measurements and predictions





The experimental average is dominated by the magic gamma experiments (BNL+FNAL).  $\rightarrow$  Independent measurements are important.

# **Conventional muon beam**



Source of systematic uncertainties

10

# Muon beam at J-PARC

# 11



### Muon g-2/EDM experiment at J-PARC



### **Experimental sequence**



cooling



Expected time spectrum of  $e^+$  in  $\mu \rightarrow e^+ \nu \nu$  decay



#### Muon storage magnet and detector 15



M. Abe et. al., NIM A 890, 51 (2018)

# Very weak magnetic focusing

 Radial magnetic field can be a major source of systematics on EDM since the g-2 term mixes to the EDM term.



### Very weak magnetic focusing

- Bill Morse, Yannis Semertizdis (2010)
- Field index n = 1E-4 (1ppm/cm)
- Vertical position of muon beam will be self-adjusted to find B<sub>r</sub> = 0.
- Also very powerful to suppress the "pitch effect" on g-2 (~10 ppb).



# J-PARC muon g-2/EDM experiment 17



M. Abe et. al., NIM A 890, 51 (2018)

- No electric focusing
- Very weak magnetic focusing n = 1.5 x 10<sup>-4</sup> (1ppm/cm)
- Br = 0.1ppm  $\rightarrow$  0.2 mm shift in vertical position
- Sensitivity: 1.5 x 10<sup>-21</sup> ecm



### **Expected uncertainties**

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

|                                                                         | Estimation           |
|-------------------------------------------------------------------------|----------------------|
| Total number of muons in the storage magnet                             | $5.2 \times 10^{12}$ |
| Total number of reconstructed $e^+$ in the energy window [200, 275 MeV] | $5.7 \times 10^{11}$ |
| Effective analyzing power                                               | 0.42                 |
| Statistical uncertainty on $\omega_a$ [ppb]                             | 450                  |
| Uncertainties on $a_{\mu}$ [ppb]                                        | 450 (stat.)          |
|                                                                         | < 70 (syst.)         |
| Uncertainties on EDM [ $10^{-21} e \cdot cm$ ]                          | 1.5 (stat.)          |
|                                                                         | 0.36 (syst.)         |

Beam power 1MW Rep. Rate 25 Hz

Rapid Cycle Synchrotron (3 GeV)

#### Neutrino exp. facility

Materials and Life science experimental Facility

(MLF)

LINAC

(400 MeV).

Main Ring (30 GeV)

- PA

proton muon neutron

neutrino

Hadron exp. Hall

g-2/EDM

# g-2 and muonium experiments 20



### g-2 and muonium experiments 21 at J-PARC Fermilab E989 J-PARC g-2/EDM (2025~)

Lead by K. Shimomura (IMSS/KEK)



MuSEUM(J-PARC) Ongoing

# Mu HFS

H. Torii's talk

Three independent experiments have launched at J-PARC for improved measurements.

of the Technical of Synergies



KEK, Tsukuba Campus To be transported to J-PARC MLF S-line in summer 2020

Mu 1S-2S

Mu-MASS(PSI), new exp.(J-PARC)

#### In preparation

Lead by S. Uetake (Okayama)



### **Experimental areas for experiments** 23

Extension for g-2/EDM to be constructed in FY2022

H1 area for Mu-HFS (MuSEUM) to be commissioned from Jan 2022

> S2 area for muon cooling tests and Mu 1S-2S to be commissioned from Jan 2022

# Construction of surface muon beamline (H-line)



Fig. 2. The H-line layout. Prog. Theor. Exp. Phys. 2018, 113G01



### **Construction team of the S2 experimental area**



### **Production of thermal energy muon**

Silica aerogel with laser-ablated surface (SiO<sub>2</sub>, 30 mg/cc)

μ+ (4 MeV)

surface muon beam

8 mm

P. Bakule et al., PTEP 103C0 (2013)G. Beer et al., PTEP 091C01 (2014)J. Beare et al., PTEP 123C01 (2020)

Muonium ( $\mu^+e^-$ ) 30 meV Efficiency 3 x10<sup>-3</sup>/ $\mu$ (laser region 5mm x 50mm)

#### Data taken at TRIUMF



#### Photo by S. Kamal

### Setting up the Mu ionization experiment



Successfully demonstrated ionization of hydrogen atoms Mu ionization will be tested at J-PARC MLF S-line from Jan 2022

### **KEK, Tsukuba Campus**

### **Demonstration of RF acceleration with Mu-ions**



### **Demonstration of RF acceleration with Mu-ions**



# **Muon LINAC developments**







30

IH-DTL test cavity

DAW cold model

# Muon beam injection and storage

- Horizontal injection + kicker
- (BNL E821, FNAL E989)

• 3D spiral injection + kicker

31

• (J-PARC E34)



#### Injection efficiency : 3-5%(\*)

#### **Injection efficiency : ~85%**

H. linuma et al., Nucl. Instr. And Methods. A 832, 51 (2016)

(\*) PRD73,072003 (2006)

# Sprial Injection Test Experiment with electron beam

#### Ibaraki U, KEK, U. Tokyo

CCD-Storage Magnet Camera 82.5 Gauss Beam Profile Monitor E= 80 keV (p= 296 keV/c) **CCD-Camera Steering Coils** CCD-Rot. Quad Camera Bending Steering **Electric Chopper Electron Gun Collimator** Magnets magnet2 Coils Bending magnet1 M. Lens 2 m **CCD-Camera** 

KEK Tsukuba campus

# Spiral Injection Test Experiment with electron beam



Electrons successfully injected. Next step: demonstration of storage by a pulsed kicker

# Magnet shimming test



# Cross-calibration of absolute probe

- Absolute probes from Fermilab g-2 and J-PARC are compared in the magnet at ANL for cross calibration.
- Data taking completed at B=1.45 T (Fermilab) and 1.7 T (MuSEUM). Planned another data taking at 3.0 T (J-PARC).
- Supported by the US-Japan cooperative program (2017-2020), P. Winter (US-PI), K. Sasaki (JP-PI)



# **Positron tracking detector**



#### New frontend ASIC



#### **Basic performance test**



IEEE, TNS 67, 2089 (2020)

#### JINST 15 P04027 (2020)



#### Full-scale prototype of the frontend board



## Achievements and plan



37

### Intended schedule and milestone

38

Data

taking

|                       | 2020 | 2021   | 2022             | 2022                                  | 2024                                                             | 2025                 | 2026 and                |
|-----------------------|------|--------|------------------|---------------------------------------|------------------------------------------------------------------|----------------------|-------------------------|
|                       | 2020 | 2021   | 2022             | 2025                                  | 2024                                                             | 2025                 | beyond                  |
| KEK<br>Budget         |      |        |                  |                                       |                                                                  |                      |                         |
| Surface<br>muon       |      | ★ Beam | at H1 area       | ★ Beam at H                           | 12 area                                                          |                      | ing<br>ing              |
| Bldg. and facility    |      |        | ★ Final design   |                                       | ★ Completi                                                       | on                   | nission<br>i tak        |
| Muon<br>source        |      |        | ★ Ionizatio      | n test @S2                            | ★ Ionization test at                                             | H2                   | Comn                    |
| LINAC                 |      |        |                  | ★ 1 MeV ac                            | celeration@S2<br>★ 4.5 MeV@ H2<br>★ 1                            | ★ 210 Me<br>0 MeV    | v –                     |
| Injection and storage |      |        |                  | ★ Completion of electron injection to | est                                                              | *                    | muon injection          |
| Storage<br>magnet     |      |        |                  |                                       | ★ B-field probe ready                                            | ★ Install<br>★ Shimn | ning d <mark>one</mark> |
| Detector              |      |        | ★ Mass productic | on ready                              | *                                                                | Installation         |                         |
| DAQ and computing     |      |        |                  |                                       | \star Ready                                                      |                      |                         |
| Analysis              |      |        | r                |                                       | <ul> <li>Analysis software</li> <li>Analysis environr</li> </ul> | ready<br>nent ready  |                         |

# The collaboration



# Summary

- Muon g-2 (and also EDM) provides excellent sensitivities to new physics models via quantum loops.
- BNL experiment (1998-2004)
  - More than  $3\sigma$  larger than the SM prediction
- Fermilab experiment (2018-)
  - Run 1 data confirmed the BNL results. More data to come.
- J-PARC experiment (2025-)
  - New method (complementary to magic gamma experiments)
    - Compact storage ring
    - Very weak magnetic focusing
    - All-tracking detector

# **Comparison of g-2 experiments** 41

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

|                             | BNL-E821                                  | Fermilab-E989        | Our experiment                               |
|-----------------------------|-------------------------------------------|----------------------|----------------------------------------------|
| Muon momentum               | 3.09 GeV/c                                |                      | 300 MeV/c                                    |
| Lorentz $\gamma$            | 29.3                                      |                      | 3                                            |
| Polarization                | 100%                                      |                      | 50%                                          |
| Storage field               | B = 1.45  T                               |                      | B = 3.0  T                                   |
| Focusing field              | Electric quadrupole                       |                      | Very weak magnetic                           |
| Cyclotron period            | 149 ns                                    |                      | 7.4 ns                                       |
| Spin precession period      | 4.37                                      | us                   | $2.11 \ \mu s$                               |
| Number of detected $e^+$    | $5.0 \times 10^{9}$                       | $1.6 \times 10^{11}$ | $5.7 \times 10^{11}$                         |
| Number of detected $e^-$    | $3.6 \times 10^{9}$                       | —                    | —                                            |
| $a_{\mu}$ precision (stat.) | 460 ppb                                   | 100 ppb              | 450 ppb                                      |
| (syst.)                     | 280 ppb                                   | 100 ppb              | <70 ppb                                      |
| EDM precision (stat.)       | $0.2 \times 10^{-19} e \cdot \mathrm{cm}$ | —                    | $1.5 \times 10^{-21} e \cdot \mathrm{cm}$    |
| (syst.)                     | $0.9 \times 10^{-19} e \cdot \mathrm{cm}$ | —                    | $0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$ |

| Compl | leted | Running |
|-------|-------|---------|
| Compi | leted | Running |

In preparation

### Statistical and systematic uncertainties

42

Prog. Theor. Exp. Phys. 2019, 053C02

#### Summary of statistical uncertainties

| Estimation           |
|----------------------|
| $5.2 \times 10^{12}$ |
| $5.7 \times 10^{11}$ |
| 0.42                 |
| 450                  |
| 450 (stat.)          |
| < 70 (syst.)         |
| 1.5 (stat.)          |
| 0.36 (syst.)         |
|                      |

#### Estimated systematic uncertainties on $a_{\mu}$

| Anomalous spin precession ( $\omega_a$ ) |                  | Magnetic field $(\omega_p)$  |                  |  |
|------------------------------------------|------------------|------------------------------|------------------|--|
| Source                                   | Estimation (ppb) | Source                       | Estimation (ppb) |  |
| Timing shift                             | < 36             | Absolute calibration         | 25               |  |
| Pitch effect                             | 13               | Calibration of mapping probe | 20               |  |
| Electric field                           | 10               | Position of mapping probe    | 45               |  |
| Delayed positrons                        | 0.8              | Field decay                  | < 10             |  |
| Diffential decay                         | 1.5              | Eddy current from kicker     | 0.1              |  |
| Quadratic sum                            | < 40             | Quadratic sum                | 56               |  |