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—nergy-momentum conservation in unimodular gravity?

In general relativity, energy-momentum conservation is a consequence of the field equations:

_ a —
Gab — KTab — V Tab — O
In unimodular gravity, the Einstein field equations are replaced by their trace-free counterpart

1 1
R, ——R =71, ——T
ab A 8ab ab A 8ab

Using the Bianchi identities, we no longer get a conservation law:

1 -~
VT, =2V (R+xT) =,

energy-momentum transfer

In unimodular gravity, energy-momentum conservation for matter fields
becomes an independent assumption, and V“T,_, # 0 in general.

[Ellis, van Elst, Murugan, Uzan; Josset, Perez, Sudarsky]
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Effective dark energy from energy-momentum non-conservation

The field equations of UG can be recast in the form of effective Einstein equations

1
Rab _ ER 8ab T (Aoo + J ]> 8ab = KTab
4

To ensure that the geometry only depends on the point (and not on the path £1)
the energy-momentum transfer must be integrable

d/j=0 = J =-V 0
¢ ‘ \energy—momentum
transfer potential

Then, the equations of UG read as Gab = K (Tab —+ Tab) with K‘Tab = anb
(dark energy withw = — 1)

By construction, the total energy-momentum tensor is conserved V4T, + Tab) =0

IDE models with w = — 1 and integrable transfer are embedded in unimodular gravity‘

[Perez, Sudarsky, Josset, Wilson-Ewing]
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Large scale instabilities?

A large class of interacting dark energy models suffers from well-known

large scale non-adiabatic instabilities on super-horizon scales
[Valiviita, Majerotto, Maartens]

Our goal is to show that we can build instability-free IDE models
that are embedded in unimodular gravity.

Transfer models

In this context, a model is a specific proposal for the energy-momentum transfer potential O
This does not follow from the field equations and must be prescribed separately.

There are proposals for the possible microscopic origin of energy-momentum

non-conservation due to spacetime discreteness at the Planck scale.
[Josset, Perez, Sudarsky]
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Cosmological perturbations in unimodular gravity

We focus on the scalar sector, because that’s where the instability found in [Valiviita, Majerotto,
Maartens] shows up, and also where modifications introduced by unimodular gravity play a role.

metric perturbations:

ds?* = a(n)z{ —(1 4+ 2¢)dn? + 2B,l-dxid77 + [(1 - 2y)o;; + 2E,l-j] dx'dx’/ }

matter perturbations:

5TX b — (51014 + 5pA)l/_tal/_lb -+ (p_A +pA)(5MXl/_tb -+ I/_laéul?) + 5pA 56;9 -+ ﬂ'X b

dark energy perturbations (recall p, = — K'_IQ) ; 5Tab = — 5px 562

Background evolution

K

%2=§a2 (ﬁ"‘ﬁx) pu+3H(py+py) =x""'0, ZQA= O
A
p+3Fp+p)=x'Q =-p. ‘NB: no equation for Q at this stage.‘
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Cosmological perturbations in unimodular gravity

perturbed field equations (longitudinal gauge):
—Aw+3F W'+ X p) = —§a2(5p+5px) . Hp+y = —gaz(p‘ +py, w-¢=kaz,

12

1 / / a 2 K 2 2
'+ Z (' + 2+ (22— - F gb=5a 5p—5px+§Aﬂ
a

op
continuity equations: 0, = A y+B), 5, = p—A
A

)/ oY H 5 ’
Sy + <3%(c§A —wy) + K—lg) Sp+ (wy+ )0, = 3wy + Dy’ + 37 (¢, — c2)) [3%(1 +wy) — K_I&] O 12

Pa pa | K Pa
k2 2k* k2 1 + ¢2 )’
0, + (1 —3c2)0, —k*p — 2,6, + —, =k [ = 50, — 4 ) =g,
1+wy 3(1 +wp)pa pa(l +wy) L+wy ) pa

Note that there is no additional equation for 0, = 50/0

6. is not defined for a fluid with w = — 1.
We can identify it with the velocity perturbation for the total fluid 8, = 6.
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A simple transter model

In order to solve the equations, we also need to model the energy-momentum transter.

We choose a model where the violation of energy-momentum conservation is
only due to dark matter and the transfer potential is

Q=—-A_,+ekp,

cosmological constant \

at future infinity energy density of CDM

(integration constant)

With this, dark energy evolves adiabatically w.rt. COM (. =(. = §,.=0

The CDM (non)conservation equations then read as:

background: (1 —e)p,. +3#p.=0

1-4
oerturbations: (1 —€)8.+6. -3y’ =0, 6.+ ( 1 €> HO.—k*p—ek*5.=0
— €
. ) €
CDM effectively behaves as a fluid with Cooff = Weff = .
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—ffective sound speed of DM

CDM effectively behaves as a fluid with ¢ = Wegg = 1
’ — €

To avoid gradient instabilities, we shall require € > 0.

This condition also tells us that energy flows from dark matter to dark energy
(the effective cosmological ‘constant’ must be increasing)

The characterisation of DM with parameters cszeff , Wegp resembles

the generalized dark matter phenomenological model (in the inviscid case)
[Hu] [Kopp, Skordis, Thomas]
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Radiation dominated era

We solve the gravity+matter equations during RDE at tight coupling for super-horizon modes,
taking into account baryons, photons, neutrinos in addition to DE and CDM

2 4
Constant mode. w = <1 +§Qy> ¢+ ESWQUU - Q)
Decaying mode. w = (kn)" ne — 3+%QV P = (1—%52”)1//

Matter perturbations 6, , 0, , 6, are also well behaved in both cases

DE density perturbations are also bounded and decreasing in magnitude:
5 = —3— <p_c> W
l-e¢ Px

No instability
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Matter dominated era

Assume only interacting CDM and DE as matter fields.

There is no anisotropic stress, so ¢ = .

1 —¢€ 2 ) €
H = o Cseff =
1+2¢/ n ’ I —e¢

W'+ 3T+ gy + (27 + T 4320 Jwr+ S ky = 0
Super-horizon modes (¢, o ki << 1)
(553G 143 Sze
y=yo o (E2) o S e

same as in Hu’s GDM

Also In this case there are no instabillities.
The ACDM limit € = 0 is continuous on these scales.
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Matter dominated era

Sub-horizon modes (¢, o4 k17 > 1)

on these scales, the potential and the density contrast oscillate,
the latter with increasing amplitude

1 2
3(1+3Cs,eff)

W ~ cos(c¢, k7] + @) 0.~ a SIn(C¢, k1 + @)

different power compared to
super-horizon modes

in ACDM, the sound speed of CDM is exactly zero and 0. ~ a on all scales

Therefore, € — 0 is a singular limit. For any finite non-zero values of € (no matter how small),
the behaviour of sub-horizon modes is qualitatively different from the € = O case.

This offers an opportunity to test the model and constrain the coupling €.
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Further generalizations

We could choose a more general model for the transfer potential. Some examples are:

expansion scalar of
J ——eqV 0.« CDM fourvelocity

a a~ CDM

Ja = —€ Va(QCDM)z

a uu °> - CbM

BN

energy density of CDM

J = —GKVa<F(TCDM 0 ))

One could also include in the functional dependence of F further geometric invariants,
or additional interactions with other matter species.

In any case, we would still have w = — 1, but such modifications may introduce
further features to the effective fluid description of DM.
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Conclusions

e IDE models with w = — 1 and integrable transfer are embedded in unimodular gravity
(trace-free Einstein equations)

e [or this class of models, we derive the general equations for scalar cosmological
perturbations. These are a special case of [Valiviita, Majerotto, Maartens]

e We assume a simple model where Q = — A_ + €k p,. and examine in detail the evolution
of perturbations

4+ CDM effectively behaves as a fluid with Csz,eff = w.g =€/(1 —¢€)

+ ¢ > 0 ensures that there is no gradient instability. Energy flows from CDM to DE.

4+ We solved the equations analytically for super-horizon modes during RDE, and for both
super-horizon and sub-horizon modes during MDE. No large scale instabilities.

4+ The limit € — 0 is singular for sub-horizon modes. There may be significant differences
from ACDM on these scales, which gives us an opportunity to test the model and
constrain €.

4+ Several generalisations of the model are possible within this framework. Can we
identify all models within this class that are free from instabilities”

e Future work should focus on a detailed analysis of the impact of this kind of dark sector

interactions on the CMB and structure formation.
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