Interacting dark sector from unimodular gravity: cosmological perturbations with no instability

based on joint work with Ed Wilson-Ewing (UNB, Canada)

M. de Cesare, E. Wilson-Ewing, arXiv:2111.xxxxx [gr-qc] (to appear soon)

Marco de Cesare

University of the Basque Country UPV/EHU, Bilbao, Spain Department of Theoretical Physics

Brookhaven Forum 2021, *Opening New Windows to the Universe* November 3 2021, Brookhaven National Laboratory (Virtually)

Talk outline

- Energy-momentum (non)conservation in unimodular gravity
 - \bullet Connection with w = -1 IDE models
- Cosmological perturbations in unimodular gravity: general framework
- A simple model for energy-momentum transfer
- Solutions and absence of instabilities:
 - ◆ Radiation dominated era
 - Matter dominated era
- Further generalizations
- Conclusions

Energy-momentum conservation in unimodular gravity?

In general relativity, energy-momentum conservation is a consequence of the field equations:

$$G_{ab} = \kappa T_{ab} \implies \nabla^a T_{ab} = 0$$

In unimodular gravity, the Einstein field equations are replaced by their trace-free counterpart

$$R_{ab} - \frac{1}{4} R g_{ab} = T_{ab} - \frac{1}{4} T g_{ab}$$

Using the Bianchi identities, we no longer get a conservation law:

$$\kappa \nabla^c T_{ac} = \frac{1}{4} \nabla_a (R + \kappa T) \equiv J_a$$
 energy-momentum transfer

In unimodular gravity, energy-momentum conservation for matter fields becomes an independent assumption, and $\nabla^a T_{ab} \neq 0$ in general.

[Ellis, van Elst, Murugan, Uzan; Josset, Perez, Sudarsky]

Effective dark energy from energy-momentum non-conservation

The field equations of UG can be recast in the form of effective Einstein equations

$$R_{ab} - \frac{1}{2}R g_{ab} + \left(\Lambda_{\infty} + \int_{\ell} J\right) g_{ab} = \kappa T_{ab}$$

To ensure that the geometry only depends on the point (and not on the path ℓ !) the energy-momentum transfer must be integrable

$$dJ=0 \implies J_a=-\,\nabla_a Q \underbrace{\hspace{1cm}}_{\text{energy-momentum}}$$
 transfer potential

Then, the equations of UG read as
$$G_{ab}=\kappa\,(T_{ab}+\tilde{T}_{ab})$$
 with $\kappa\,\tilde{T}_{ab}=Q\,g_{ab}$ (dark energy with $w=-1$)

By construction, the total energy-momentum tensor is conserved $\nabla^a(T_{ab}+\tilde{T}_{ab})=0$

IDE models with w = -1 and integrable transfer are embedded in unimodular gravity

[Perez, Sudarsky, Josset, Wilson-Ewing]

Large scale instabilities?

A large class of interacting dark energy models suffers from well-known large scale non-adiabatic instabilities on super-horizon scales

[Valiviita, Majerotto, Maartens]

Our goal is to show that we can build instability-free IDE models that are embedded in unimodular gravity.

Transfer models

In this context, a model is a specific proposal for the energy-momentum transfer potential Q This does not follow from the field equations and <u>must be prescribed separately</u>.

There are proposals for the possible microscopic origin of energy-momentum non-conservation due to spacetime discreteness at the Planck scale.

[Josset, Perez, Sudarsky]

Cosmological perturbations in unimodular gravity

We focus on the scalar sector, because that's where the instability found in [Valiviita, Majerotto, Maartens] shows up, and also where modifications introduced by unimodular gravity play a role.

metric perturbations:

$$ds^{2} = a(\eta)^{2} \left\{ -(1+2\phi)d\eta^{2} + 2B_{,i}dx^{i}d\eta + \left[(1-2\psi)\delta_{ij} + 2E_{,ij} \right]dx^{i}dx^{j} \right\}$$

matter perturbations:

$$\delta T_{A\ b}^{a} = (\delta \rho_{A} + \delta p_{A}) \bar{u}^{a} \bar{u}_{b} + (\bar{\rho}_{A} + \bar{p}_{A}) \left(\delta u_{A}^{a} \bar{u}_{b} + \bar{u}^{a} \delta u_{b}^{A} \right) + \delta p_{A} \delta_{\ b}^{a} + \pi_{A\ b}^{a}$$

dark energy perturbations (recall $\rho_{\rm x}=-\,\kappa^{-1}Q$) : $\delta \tilde{T}^a_{\ b}=-\,\delta \rho_{\rm x}\,\delta^a_{\ b}$

Background evolution

$$\mathcal{H}^2 = \frac{\kappa}{3} a^2 \left(\bar{\rho} + \bar{\rho}_x\right) \qquad \bar{\rho}_A' + 3\mathcal{H}(\bar{\rho}_A + \bar{p}_A) = \kappa^{-1} \bar{Q}_A' \qquad \sum_A Q^A = Q^A$$

$$\bar{\rho}' + 3\mathcal{H}(\bar{\rho} + \bar{p}) = \kappa^{-1}Q' = -\bar{\rho}'_x$$

NB: no equation for $ar{Q}$ at this stage.

Cosmological perturbations in unimodular gravity

perturbed field equations (longitudinal gauge):

$$- \triangle \psi + 3\mathcal{H}(\psi' + \mathcal{H}\phi) = -\frac{\kappa}{2}a^2(\delta\rho + \delta\rho_x) , \quad \mathcal{H}\phi + \psi' = -\frac{\kappa}{2}a^2(\bar{\rho} + \bar{p})v , \quad \psi - \phi = \kappa a^2\pi ,$$

$$\psi'' + \mathcal{H}(\phi' + 2\psi') + \left(2\frac{a''}{a} - \mathcal{H}^2\right)\phi = \frac{\kappa}{2}a^2\left(\delta\rho - \delta\rho_x + \frac{2}{3}\Delta\pi\right)$$

continuity equations:
$$\theta_A \equiv \triangle (v_A + B)$$
, $\delta_A \equiv \frac{\delta \rho_A}{\bar{\rho}_A}$

$$\begin{split} \delta_A' + \left(3\mathcal{H}(c_{sA}^2 - w_A) + \kappa^{-1}\frac{\bar{Q}_A'}{\bar{\rho}_A}\right)\delta_A + (w_A + 1)\theta_A - 3(w_A + 1)\psi' + 3\mathcal{H}(c_{sA}^2 - c_{aA}^2)\left[3\mathcal{H}(1 + w_A) - \kappa^{-1}\frac{\bar{Q}_A'}{\bar{\rho}_A}\right]\frac{\theta_A}{k^2} &= \kappa^{-1}\frac{\delta Q_A'}{\bar{\rho}_A}\;,\\ \theta_A' + \mathcal{H}(1 - 3c_{sA}^2)\theta_A - k^2\phi - \frac{k^2}{1 + w_A}c_{sA}^2\delta_A + \frac{2k^4}{3(1 + w_A)\bar{\rho}_A}\pi_A &= \kappa^{-1}\left[\frac{k^2}{\bar{\rho}_A(1 + w_A)}\delta Q_A - \left(\frac{1 + c_{sA}^2}{1 + w_A}\right)\frac{\bar{Q}_A'}{\bar{\rho}_A}\theta_A\right] \end{split}$$

Note that there is no additional equation for $\delta_x = \delta Q/Q$

 θ_{x} is not defined for a fluid with w=-1. We can identify it with the velocity perturbation for the total fluid $\theta_x \equiv \theta$.

A simple transfer model

In order to solve the equations, we also need to model the energy-momentum transfer.

We choose a model where the violation of energy-momentum conservation is only due to dark matter and the transfer potential is

$$Q = -\Lambda_{\infty} + \epsilon \, \kappa \, \rho_c$$
 cosmological constant at future infinity (integration constant) energy density of CDM

With this, dark energy evolves adiabatically w.r.t. CDM $\zeta_x = \zeta_c \implies S_{xc} = 0$

The CDM (non)conservation equations then read as:

background:
$$(1 - \epsilon)\bar{\rho}'_c + 3\mathcal{H}\bar{\rho}_c = 0$$

$$\text{perturbations:} \quad (1-\epsilon)\delta_c' + \theta_c - 3\psi' = 0 \ , \quad \theta_c' + \left(\frac{1-4\epsilon}{1-\epsilon}\right)\mathcal{H}\theta_c - k^2\phi - \epsilon\,k^2\delta_c = 0$$

CDM effectively behaves as a fluid with
$$c_{s, \rm eff}^2 = w_{\rm eff} = \frac{\epsilon}{1-\epsilon}$$

Effective sound speed of DM

CDM effectively behaves as a fluid with
$$c_{s, {\rm eff}}^2 = w_{\rm eff} = \frac{\epsilon}{1 - \epsilon}$$

To avoid gradient instabilities, we shall require $\epsilon \geq 0$.

This condition also tells us that energy flows from dark matter to dark energy (the effective cosmological 'constant' must be increasing)

The characterisation of DM with parameters $c_{s, {
m eff}}^2$, $w_{
m eff}$ resembles the generalized dark matter phenomenological model (in the inviscid case) [Hu] [Kopp, Skordis, Thomas]

Radiation dominated era

We solve the gravity+matter equations during RDE at tight coupling for super-horizon modes, taking into account baryons, photons, neutrinos in addition to DE and CDM

Constant mode.
$$\psi = \left(1 + \frac{2}{5}\Omega_{\nu}\right)\phi + \frac{4}{15}S_{\nu\gamma}\Omega_{\nu}(1 - \Omega_{\nu})$$

Decaying mode.
$$\psi \approx (k\eta)^n$$
 $n \approx -3 + \frac{8}{5}\Omega_{\nu}$ $\phi = (1 - \frac{8}{5}\Omega_{\nu})\psi$

$$n \approx -3 + \frac{8}{5}\Omega_{\nu}$$

$$\phi = (1 - \frac{8}{5}\Omega_{\nu})\psi$$

Matter perturbations $heta_A$, δ_A , $\sigma_
u$ are also well behaved in both cases

DE density perturbations are also bounded and decreasing in magnitude:

$$\delta_{x} = -3 \frac{\epsilon}{1 - \epsilon} \left(\frac{\bar{\rho}_{c}}{\bar{\rho}_{x}} \right) \psi$$

No instability

Matter dominated era

Assume only interacting CDM and DE as matter fields.

There is no anisotropic stress, so $\phi = \psi$.

$$\mathcal{H} = \left(\frac{1 - \epsilon}{1 + 2\epsilon}\right) \frac{2}{\eta} \qquad c_{s,\text{eff}}^2 = \frac{\epsilon}{1 - \epsilon}$$

$$\psi'' + 3\mathcal{H}(1 + c_{s,\text{eff}}^2)\psi' + \left(2\mathcal{H}' + \mathcal{H}^2(1 + 3c_{s,\text{eff}}^2)\right)\psi + c_{s,\text{eff}}^2k^2\psi = 0$$

Super-horizon modes ($c_{s, \text{eff}} k \eta \ll 1$)

$$\psi = \psi_0 + C \eta^{-\left(\frac{5+3c_{s,eff}^2}{1+3c_{s,eff}^2}\right)} \qquad \delta_c \sim a^{1+3c_{s,eff}^2}$$
 same as in Hu's GDM

Also in this case there are no instabilities. The Λ CDM limit $\epsilon \to 0$ is continuous on these scales.

Matter dominated era

Sub-horizon modes ($c_{s, {\rm eff}} \, k \eta \gg 1$)

on these scales, the potential and the density contrast oscillate, the latter with increasing amplitude

$$\psi \sim \cos(c_{s,\rm eff}k\eta + \varphi_k)$$

$$\delta_c \sim a^{\frac{1}{2}(1+3c_{s,\rm eff}^2)}\sin(c_{s,\rm eff}k\eta + \varphi_k)$$
 different power compared to super-horizon modes

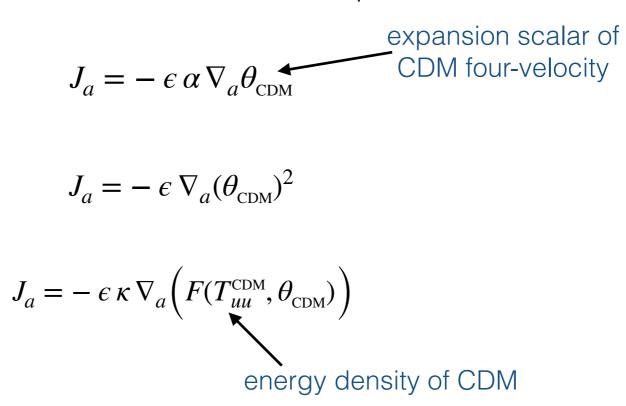
in $\Lambda {\rm CDM},$ the sound speed of CDM is exactly zero and $\delta_c \sim a \ {\rm on \ all \ scales}$

Therefore, $\epsilon \to 0$ is a singular limit. For any finite non-zero values of ϵ (no matter how small), the behaviour of sub-horizon modes is qualitatively different from the $\epsilon = 0$ case.

This offers an opportunity to test the model and constrain the coupling ϵ .

Further generalizations

We could choose a more general model for the transfer potential. Some examples are:



One could also include in the functional dependence of F further geometric invariants, or additional interactions with other matter species.

In any case, we would still have w = -1, but such modifications may introduce further features to the effective fluid description of DM.

Conclusions

- IDE models with w=-1 and integrable transfer are embedded in unimodular gravity (trace-free Einstein equations)
- For this class of models, we derive the general equations for scalar cosmological perturbations. These are a special case of [Valiviita, Majerotto, Maartens]
- We assume a simple model where $Q=-\Lambda_\infty+\epsilon\,\kappa\,\rho_c$ and examine in detail the evolution of perturbations
 - lacktriangle CDM effectively behaves as a fluid with $c_{s, \text{eff}}^2 = w_{\text{eff}} = \epsilon/(1-\epsilon)$
 - \bullet $\epsilon \geq 0$ ensures that there is no gradient instability. Energy flows from CDM to DE.
 - ◆ We solved the equations analytically for super-horizon modes during RDE, and for both super-horizon and sub-horizon modes during MDE. No large scale instabilities.
 - ♦ The limit $\epsilon \to 0$ is singular for sub-horizon modes. There may be significant differences from Λ CDM on these scales, which gives us an opportunity to test the model and constrain ϵ .
 - ◆ Several generalisations of the model are possible within this framework. Can we identify all models within this class that are free from instabilities?
- Future work should focus on a detailed analysis of the impact of this kind of dark sector interactions on the CMB and structure formation.