A no-lose theorem for discovering the new physics of $(g - 2)_{\mu}$

Brookhaven Forum (Virtual) 4 Nov 2021

David Curtin University of Toronto

based on 2006.16277, 2101.10334 with **Rodolfo Capdevilla, Yonatan Kahn, Gordan Krnjaic**

Exciting!

7 April 2021:

Upshot:

BNL + Fermilab say

 $\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$

which is disagreeing with SM prediction at 4.2 σ level.

If real:

BSM physics talks to the muon!

→ Muon physics program from ~ **GeV - 10 TeV will find new physics!**

2006.16277, 2101.10334

BSM Physics in $(g - 2)_{\mu}$

Very simple:

Could be almost anything, as long as it couples to muons

 μ_L

Could be connected to dark matter, SUSY, axions, any other new physics motivation...

This is such a general new physics contribution that it could be embedded within almost any BSM theory.

Ask a simpler question...

What would it take to *guarantee* we discover this new physics, *regardless* of the complete theory?

Model Exhaustive Approach

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

 $\Delta a_{\mu} \gg \Delta a_{\mu}^{obs}$ auge Invariance

One Loop + Unitarity

$$\propto \left(\frac{g_{\psi}}{M_{\psi}}\right)^n$$

 $\Delta a_{\mu}^{S} \neq I a_{\mu}^{Obs}$ auge Invariance

We would love to discover this new physics DIRECTLY. Where the new {particles at??

One Loop + Unitarity

$$\propto \left(\frac{g_\psi}{M_\psi}\right)^n$$

General BSM analysis of (12)

Can we do this in full generality?

Model-Exhaustive Analysis

Assume new physics obeys perturbative unitarity.*

Assume new $(g - 2)_{\mu}$ contribution arises at one-loop.**

Then consider:

- all possible $SU(2)_L \otimes U(1)_V$ gauge representations for the new particles
- all possible Lorentz group representations*** for the new particles
- arbitrary multiplicity N_{RSM} of new particles
- all possible masses & couplings that generate Δa_{μ}^{exp}

Then ask: what are some irreducible experimental signatures?

*pushing couplings right up to unitarity limit should capture parametrics of non-perturbative solutions, they still have to obey qauge invariance.

** higher loop contributions require lower BSM mass scales, should be discoverable with the experiments we consider

*** Spin 0, 1/2 and 1. Higher spin g-2 contributions highly suppressed, 2104.03231.

Model-Exhaustive Analysis

Assume new physics obeys perturbative unitarity.*

Assume new $(g - 2)_{\mu}$ contribution arises at one-loop.**

Then consider:

- all possible Lorentz group representations*** for the new particles
- arbitrary multiplicity N_{RSM} of new particles
- all possible masses & couplings that generate Δa_{μ}^{exp}

Then ask: what are some irreducible experimental signatures?

*pushing couplings right up to unitarity limit should capture parametrics of non-perturbative solutions, they still have to obey qauge invariance.

** higher loop contributions require lower BSM mass scales, should be discoverable with the experiments we consider

*** Spin 0, 1/2 and 1. Higher spin g-2 contributions highly suppressed, 2104.03231.

- all possible $SU(2)_L \otimes U(1)_V$ gauge representations for the new particles

Divide BSM Theory Space into two classes

Singlet Scenarios:

new physics in $(g - 2)_{\mu}$ is SM singlets only

simple theory space, more complicated phenomenology

Electroweak Scenarios:

complicated theory space, simple phenomenology (new charged particles!)

everything else: i.e. new particles with non-trivial EW representations in loop

Model Exhaustive Approach

Singlet Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Vector

 $\mathcal{L}_{\rm V} \supset g_V V_\alpha (\mu_L^{\dagger} \bar{\sigma}^{\alpha} \mu_L + \mu^c^{\dagger} \bar{\sigma}^{\alpha} \mu^c) + \frac{m_V^2}{2} V_\alpha V^\alpha$ $\mathcal{L}_{\rm S} \supset -\left(g_S S \mu_L \mu^c + \text{h.c.}\right) - \frac{1}{2} m_S^2 S^2$ $|Sh| | h_h$ \mathcal{U} \mathcal{U} \mathcal{U} $i^v F^c$ $\mu^{c}\!\mu^{c}$ $\mu \mu_L$ $\mu^{c}\!\mu^{c}$ $\mu^{c}\mu^{a}L$ $\mu^c \mu^c$ μ_L $\Delta a^{S}_{\mu}/\Lambda$ Singlet S $e^{\frac{2}{S}}_{et}\left(\frac{700 \text{ GeV}}{\text{S}}\right)$

Scalar

 $(g-2)_{\mu}$ contributions from RHN-type singlet fermion is suppressed by m_{ν} and too small. Interesting edge case: $aF_{\mu\nu}\tilde{F}_D^{\mu\nu}$ axion-dark-photon contribution (2104.03276), but is also discoverable.

Singlet Scenarios

Requires singlet below 3 TeV

couples to muon $g_S \propto m_S$

Model Exhaustive Approach

Electroweak Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Electroweak Scenarios

Singlet V In general a complicated model space: all non-singlet one-loop possibilities!

16

Singlet S

New Charged Particles

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

n your detector $r_{gy}\sqrt{s}$ do I need to produce a

New Charged Particles

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

 $M_{\text{BSM,charged}}^{\text{max}} \equiv \max_{\text{BSM theory space}} \left\{ \min_{i \in \text{BSM spectrum}} \left(m_{\text{charged}}^{(i)} \right) \right\}$

 $\Delta a_{\mu} = \Delta a_{\mu}^{\text{obs}}$

We can brute-force min-max across all the models' parameter space to find the highest possible mass the lightest BSM charged state can have to be consistent with g-2.

Electroweak Simplified Models

Model-exhaustive analyses are not a new idea, but this theory space maximization to find the largest possible BSM charged mass is non-trivial.

heaviest possible BSM charged masses while explaining (g-2)!

Engineering specs:

- need BSM (i.e. large) chiral flip insertion
- need BSM (i.e. large) Higgs vev insertion
- need three new fields (boson, fermion, and two of something)
- no new sources of EWSB (those have their own lower-mass signatures)

- We will define some simplified models which are engineered to produce the
- Maximizing over the space of those simplified models will give us our answer!

Electrow Singlet V Simplifi Singlet V S Jdels

Consider all possible choices of $SU(2)_L \otimes U(1)_V$ representations $R \leq 3, Q \leq 2$.

Arbitrary number of BSM degrees of freedom (copies) N_{RSM} .

smaller $\Delta a_{\mu} \rightarrow$ lower masses for new charged states \rightarrow do not affect theory space maximization

 $\begin{array}{c|c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$

We have checked that other simplified models with fewer BSM fields, or involving Majorana fermions, new vectors, etc give

What's the result?

 $M_{
m BSM, charged}^{
m max}$ \equiv max

BSM theory space

 $\Delta a_{\mu} = \Delta a_{\mu}^{\mathrm{obs}}$

 $\min_{i \in \text{BSM spectrum}} \left(m_{\text{charged}}^{(i)} \right)$

Example of parameter space plot for two EW models, showing lightest BSM charged particle mass with unitarity constraints only

 $M_{\rm BSM, charged}^{\rm max, X} \approx \left(\frac{2.8 \times 10^{-9}}{\Delta a_{\mu}^{\rm obs}}\right)^{\frac{1}{2}} \times \begin{cases} (100 \,{\rm TeV}) \ N_{\rm BSM}^{1/2} \ (20 \,{\rm TeV}) \ N_{\rm BSM}^{1/2} \ for \ X = ({\rm unitarity+MFV}), \\ (20 \,{\rm TeV}) \ N_{\rm BSM}^{1/6} \ for \ X = ({\rm unitarity+naturalness*}), \\ (9 \,{\rm TeV}) \ N_{\rm BSM}^{1/6} \ for \ X = ({\rm unitarity+naturalness+MFV}). \end{cases}$

Imposing only unitarity constraints on all couplings.

(eV)
$$N_{\text{BSM}}^{1/2}$$
 for $X = (\text{unitarity}^*)$,
(eV) $N_{\text{BSM}}^{1/2}$ for $X = (\text{unitarity} + \text{MFV})$,
(eV) $N_{\text{BSM}}^{1/6}$ for $X = (\text{unitarity} + \text{naturalness}^*)$,
(eV) $N_{\text{BSM}}^{1/6}$ for $X = (\text{unitarity} + \text{naturalness} + \text{MFV})$.

Imposing only unitarity constraints on all couplings. Imposing MFV on couplings to avoid CLFV bounds.

Imposing only unitarity constraints on all couplings. Imposing MFV on couplings to avoid CLFV bounds.

Imposing $\Delta < 100$ Naturalness constraint, since BSM particles generate **calculable and large** corrections to Higgs & μ mass.

eV)
$$N_{\text{BSM}}^{1/2}$$
 for $X = (\text{unitarity}^*)$,
eV) $N_{\text{BSM}}^{1/2}$ for $X = (\text{unitarity} + \text{MFV})$,
eV) $N_{\text{BSM}}^{1/6}$ for $X = (\text{unitarity} + \text{naturalness}^*)$,
eV) $N_{\text{BSM}}^{1/6}$ for $X = (\text{unitarity} + \text{naturalness} + \text{MFV})$.

Imposing only unitarity constraints on all couplings. Imposing MFV on couplings to avoid CLFV bounds.

Imposing $\Delta < 100$ Naturalness constraint, since BSM particles generate calculable and large corrections to Higgs & μ mass.

MFV + naturalness: the most "reasonable" upper bound!

eV)
$$N_{\rm BSM}^{1/2}$$
 for $X = (unitarity^*)$,
eV) $N_{\rm BSM}^{1/2}$ for $X = (unitarity+MFV)$,
eV) $N_{\rm BSM}^{1/6}$ for $X = (unitarity+naturalness^*)$,
eV) $N_{\rm BSM}^{1/6}$ for $X = (unitarity+naturalness+MFV)$.

Experimental Target for discovering BSM

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Relevant coupling

*m*_{BSM}

Relevant coupling

m_{BSM}

Low-Energy Experiments

Relevant coupling

*m*_{BSM}

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

Relevant coupling

*m*_{BSM}

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

O(10 TeV) Muon Collider

Relevant coupling

*m*_{BSM}

Relevant coupling

m_{BSM}

Universe "tastes" strange and is provably tuned

100 TeV

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

O(10 TeV) Muon Collider

Indirect signatures at 30 TeV Muon Collider*

* 2012.02769 Buttazzo, Paradisi 2012.03928 Yin, Yamaguchi

Low Energy Experiments

Intensity Frontier Experiments

A lot of Singlet Scenario parameter space is already excluded below a few GeV.

See also e.g.: Mohlabeng 1809.07768 Dark Sector Community Report 1707.04591 SHiP physics case 1504.04855 Krnjaic 1512.04119 Batell, Freitas, Ismail, McKeen 1712.10022 Chen, Pospelov, Zhong, 1701.07437 Bauer, Foldenauer, Jaeckel, 1803.05466

Remaining space can be fully covered by **Muon Fixed Target experiments:**

M³ proposal at Fermilab / NA64 μ at CERN

S.N. Gninenko, N.V. Krasnikov, M.M. Kirsanov, D.V. Kirpichnikov 1604.08432 Kahn, Krnjaic, Tran, Whitbeck, 1804.03144

A muon fixed-target experiment would allow *fully inclusive* coverage for $\lesssim GeV$ solutions of the $(g-2)_{\mu}$ anomaly.

Very important near-term experimental opportunity!

Muon colliders an incredibly attractive path to explore high energy physics.

Muon Colliders

1901.06150

The Muon Collider Working Group Jean Pierre Delahaye¹, Marcella Diemoz², Ken Long³, Bruno Mansoulié⁴, Nadia Pastrone⁵ (chair), Lenny Rivkin⁶, Daniel Schulte¹, Alexander Skrinsky⁷, Andrea Wulzer^{1,8}

2005.10289 Constantini, De Lillo, Maltoni, Mantani, Mattelaer, Ruiz, Zhao

They are also "guaranteed" to discover the new physics of $(g - 2)_{\mu}$

The Muon Smasher's Guide 2103.14043

Hind Al Ali¹, Nima Arkani-Hamed², Ian Banta¹, Sean Benevedes¹, Dario Buttazzo³, Tianji Cai¹, Junyi Cheng¹, Timothy Cohen⁴, Nathaniel Craig¹, Majid Ekhterachian⁵, JiJi Fan⁶, Matthew Forslund⁷, Isabel Garcia Garcia⁸, Samuel Homiller⁹, Seth Koren¹⁰, Giacomo Koszegi¹, Zhen Liu^{5,11}, Qianshu Lu⁹, Kun-Feng Lyu¹², Alberto Mariotti¹³, Amara McCune¹, Patrick Meade⁷, Isobel Ojalvo¹⁴, Umut Oktem¹, Diego Redigolo^{15,16}, Matthew Reece⁹, Filippo Sala¹⁷, Raman Sundrum⁵, Dave Sutherland¹⁸, Andrea Tesi^{16,19}, Timothy Trott¹, Chris Tully¹⁴, Lian-Tao Wang¹⁰, and Menghang Wang¹

Bonus:

Discovering the singlet production in fully inclusive search: mono-photon + anything

Only *guaranteed* coupling of singlet is to muons: Muon Collider is special!

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Collider study including conservative detector effects shows lumi needed for discovery

s ~ 200 GeV - 3 TeV: Discovering Singlet Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

A TeV-scale muon collider program would discover all Singlet solutions to the $(g - 2)_{\mu}$ anomaly.

A 30 TeV muon collider will discover all "reasonable" **EW Scenarios** that account for the $(g - 2)_{\mu}$ anomaly.

But what if you don't see anything?

/s ~ 10 TeV: Indirect hγ Signal

2012.02769 Buttazzo, Paradisi 2012.03928 Yin, Yamaguchi

cm] 5% CL limit

If the new physics is heavier than 15 TeV, a 30 TeV muon collider could still see the

$\mu\mu \rightarrow h\gamma$

signal produced by the same operator

 $(L\sigma^{\nu\rho}\mu^{c})F_{\nu\rho}$

→ Proof of a very weird and tuned universe!

A 30 TeV muon collider will see either new charged states, and/or the indirect $\mu\mu \rightarrow h\gamma$ signal!

Therefore, if you don't see new charged states, you **know** the states are there but at higher masses.

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

No-Lose Theorem for $(g - 2)_{\mu}$

1. Confirm the $(g - 2)_{\mu}$ anomaly is real.

- 2. Look for \leq GeV Singlet Scenarios in μ fixed target experiments.
- 3. Build a TeV-scale muon collider. Discover all Singlet solutions (and probe deep into EW Scenario parameter space as well).
- 4. Build a 10-TeV-scale muon collider. Discover all "reasonable" Electroweak solutions, and/or observe $h\gamma$ signal.
- fine-tuned with weird flavour physics.

Either way, a comprehensive muon program revolutionizes our understanding of the universe.

5. Either find new particles, or prove the universe is explicitly, calculably

