Long Range Non-Perturbative Effects in a t- channel Simplified Dark Matter Model

Dipan Sengupta

With

Emanuele Copello, Matthias Becker and Julia Harz (T.U. Munich)

as well as

Kirtimaan A. Mohan (M.S.U, East Lansing)

How do radiative corrections and non-perturbative effects change the threshold behavior?

$$\langle \sigma_{\chi\chi} v \rangle = \langle s_0 + s_1 v^2 + \mathcal{O}(v^4) \rangle$$

Sommerfeld Enhancements

- Distortion of two body wave functions by a long range potential
- In the low velocity limit : Can be approximated by a Schrodinger equation with a potential

$$\left[-\frac{1}{2mr^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\right) + \frac{\ell(\ell+1)}{2mr^2} + V(r) - E\right]R_\ell(r;E) = 0$$

$$\psi_k(\vec{r}) = \sum_{\ell=0}^{\infty} A_\ell P_\ell(\cos\theta) R_\ell(r; E)$$

 $S = \frac{\sigma}{\sigma^0} = \frac{|\psi(0)|^2}{|\psi^0(0)|^2}$

ange potential y a Schrodinger equation with a potential

Resumming an infinite set of ladder diagrams

$$V(r) = \frac{g_Z^2 \delta e^{-\delta r}}{1 - e^{-\delta r}}$$

Hulthen Potential

$$(\vec{0})\Big|^2 = \frac{\pi g_Z^2}{v} \frac{\sinh\frac{2vm_\chi\pi}{\delta}}{\cosh\frac{2vm_\chi\pi}{\delta} - \cos\left(2\pi\sqrt{\frac{g_Z^2m_\chi}{\delta} - \frac{v^2m_\chi^2}{\delta^2}}\right)}$$

Sommerfeld Enhancements

arXiv:1603.03797 [hep-ph] **1705.01987**

Bound State Formations

Radiative Capture into a bound state

$$X_1 + X_2 \to \mathcal{B}(X_1 X_2) + g$$

$$\mathcal{L}_{u_{R}} = \sum_{u} \left[(D_{\mu}\tilde{u})^{*} (D^{\mu}\tilde{u}) - M_{\tilde{u}}^{2} \ \tilde{u}^{*}\tilde{u} + g_{DM} \ \tilde{u}^{*} \ \bar{\chi}P_{R}u + g_{DM}^{*} \ \tilde{u} \ \bar{u}P_{L}\chi \right] \left[(3,1)_{2/3} \right]$$

$$\mathcal{L}_{d_{R}} = \sum_{d} \left[(D_{\mu}\tilde{d})^{*} (D^{\mu}\tilde{d}) - M_{\tilde{d}}^{2} \ \tilde{d}^{*}\tilde{d} + g_{DM} \ \tilde{d}^{*} \ \bar{\chi}P_{R}d + g_{DM}^{*} \ \tilde{d} \ \bar{d}P_{L}\chi \right] \left[(3,1)_{-1/3} \right]$$

$$\mathcal{L}_{\chi} = \frac{1}{2} \left(i\bar{\chi}\partial\chi - M_{\chi} - M_{\chi} \right)$$

$$\mathcal{L}_{q_{L}} = \sum_{d} \left[(D_{\mu}\tilde{q})^{*} (D^{\mu}\tilde{q}) - M_{\tilde{q}}^{2} \ \tilde{q}^{*}\tilde{q} + g_{DM} \ \tilde{q}^{*} \ \bar{\chi}P_{L}q + g_{DM}^{*} \ \tilde{q} \ \bar{q}P_{R}\chi) \right]$$

$$(3,2)_{-1/6}$$

Relic Annihilations + Co-annihilations

el

Relic denity without Sommerfeld Enhancements and BSF

$$\left\langle \sigma_{\rm eff} v_{\rm rel} \right\rangle = \left\langle \sigma_{XX^{\dagger}} v_{\rm rel} \right\rangle \left(\frac{2g_X^2 (1+\delta)^3 e^{-2\delta x}}{[g_{\chi} + 2\sum_i g_{X_i} (1+\delta)^{3/2} e^{-\delta x}]^2} \right)$$

In the degenerate limit $\langle \sigma_{\rm eff} v_{\rm rel} \rangle \simeq \langle \sigma_{XX^{\dagger}} \sigma_{XX^{\dagger}} \rangle$

Total Relic includes co-annhilations

$$egin{aligned} &-X^{\dagger},\,X-X^{\dagger}\,\, ext{and}\,\,X-X\ &\sum_{=u,c,t}Y_{X_i}+Y_{X_i}^{\dagger}=Y_{\chi}+2\sum_{i=u,c,t}Y_{X_i}\ &-c\,g_{*, ext{eff}}^{1/2}\,rac{\langle\sigma_{ ext{eff}}v_{ ext{rel}}
angle}{x^2}\left(ilde{Y}^2- ilde{Y}_{ ext{eq}}^2
ight) \end{aligned}$$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta}{m_\chi}, \quad \Delta = m_X - m_\chi$$

$$\left. v_{\mathrm{rel}} \right\rangle \frac{2g_X^2}{(g_\chi + 2\sum_i g_{X_i})^2}$$

Sommerfeld Effect and Bound State Formation 000 X_1 III

Sommerfeld effect

 $\sigma(X_1X_2 \rightarrow SMS)$

Bound State Formation (BSF)

 $\sigma(X_1X_2 \to \mathcal{B}(\lambda$

Bound state as an additional particle in the thermal bath. Figure from [Harz, Petraki (2018)]

Sommerfeld Enhancements and Bound States

n-gluon exchanges contribute with $\left(\frac{\alpha}{v}\right)^n$ for $\alpha \sim v$

$$\sigma M) = S\left(\frac{\alpha}{v}\right) \sigma_{\text{pert.}}$$

$$(X_1X_2) g) = \sigma_{BSF}$$

Color Potential

$$V(r) = -\frac{\alpha_s}{2r} \left[C_2(\mathbf{R_1}) + C_2(\mathbf{R_2}) - C_2(\mathbf{R}) \right]$$

Color Configurations

 $\mathbf{3} \times \overline{\mathbf{3}} = \mathbf{1} + \mathbf{8}$ $\mathbf{3} \times \mathbf{3} = \overline{\mathbf{3}} + \mathbf{6}$

$$V(r)_{\mathbf{3}\otimes\bar{\mathbf{3}}} = \begin{cases} -\frac{4}{3}\frac{\alpha_s}{r} & [\mathbf{1}] \\ +\frac{1}{6}\frac{\alpha_s}{r} & [\mathbf{8}] \end{cases} ; \quad V(r)_{\mathbf{3}\otimes\mathbf{3}} = \begin{cases} -\frac{2}{3}\frac{\alpha_s}{r} & [\mathbf{\overline{3}}] \\ +\frac{1}{3}\frac{\alpha_s}{r} & [\mathbf{6}] \end{cases}$$

$$\mathbf{R_1} \otimes \mathbf{R_2} = \bigoplus_{\hat{\mathbf{R}}} \hat{\mathbf{R}}$$
$$V_{[\hat{\mathbf{R}}]}(r) = -\alpha_g^{[\hat{\mathbf{R}}]}/r$$

$$\alpha_g^{[\hat{\mathbf{R}}]} = \alpha_s \times \frac{1}{2} [C_2(\mathbf{R_1}) + C_2(\mathbf{R_1}) - C_2(\hat{\mathbf{R}})] \equiv$$

$$\sigma_{ ext{SE}} = S_{0,[extbf{R}]} \, \sigma_0 \qquad S_{0,[extbf{R}]} = S_0 \left(k_{[extbf{R}]} rac{lpha_s}{v_{ ext{rel}}}
ight)$$

$$S_{0,[\mathbf{1}]} = S_0 \left(\frac{4\alpha_s^S}{3v_{\rm rel}}\right), \ S_{0,[\mathbf{8}]} = S_0 \left(\frac{-\alpha_s^S}{6v_{\rm rel}}\right), \ S_{0,[\mathbf{\overline{3}}]} = S_0 \left(\frac{2\alpha_s^S}{3v_{\rm rel}}\right), \ S_{0,[\mathbf{6}]} = S_0 \left(\frac{-\alpha_s^S}{3v_{\rm rel}}\right)$$

Bound States : Capture Processes

Particle-Anti-Particle

$$\begin{aligned} & (X + X^{\dagger})_{[\mathbf{8}]} \to \mathcal{B}(XX^{\dagger})_{[\mathbf{1}]} + g, \\ & (X + X^{\dagger})_{[\mathbf{1}]} \to \left\{ \mathcal{B}(XX^{\dagger})_{[\mathbf{8}]} + g \right\}_{[\mathbf{1}_S]}, \\ & (X + X^{\dagger})_{[\mathbf{8}]} \to \left\{ \mathcal{B}(XX^{\dagger})_{[\mathbf{8}]} + g \right\}_{[\mathbf{8}_S] \text{ or } [\mathbf{8}]_A} \end{aligned}$$

Coulomb Potential

$$\bullet \quad S_0(\zeta_s) = \frac{2\pi\zeta_s}{1 - e^{-2\pi\zeta_s}}$$

$$\zeta_s = \alpha_{g,[\mathbf{R}]} / v_{\text{rel}} = k_{[\mathbf{R}]} \, c$$

Particle-Particle

$$(X + X)_{[\bar{3}]} \to \{\mathcal{B}(XX)_{[6]} + g\}_{[\bar{3}]}$$
$$(X + X)_{[\bar{3}]} \to \{\mathcal{B}(XX)_{[\bar{3}]} + g\}_{[\bar{3}]}$$
$$(X + X)_{[6]} \to \{\mathcal{B}(XX)_{[\bar{3}]} + g\}_{[6]}$$
$$(X + X)_{[6]} \to \{\mathcal{B}(XX)_{[6]} + g\}_{[6]}$$

Process	Contribution to $\langle \sigma v \rangle$	v_{rel}	Color Structure	BSF	Capture into ground
$\chi\chi \to q_i \bar{q}_i$	$g_{ m DM}^4$	$v_{\rm rel}^2 \ (m_q = 0)$ const. $(m_q \neq 0)$	none	×	$(nlm) = (100)$ at a given by $\sigma_{\mathbf{k} \to \{100\}} v_{rel} = \frac{\pi \alpha_s^{E}}{m}$
$X_i X_j^\dagger \to gg$	$g_s^4 e^{-2x\delta}$	$\operatorname{const.}$	$ \mathcal{M} ^2 \sim rac{2}{7} [1] + rac{5}{7} [8]$	✓	$f_{1} = d_{\rm P}^2 \left(n_1^2 + n_2^2 \right) - 2 + C_2 \left(n_1^2 + n_2^2 \right) - C_2 \left(n_1^2 + n_2^2 \right) - 2 + C_2 \left(n_1^2 + n_2^2 \right) $
$X_i X_j \to q_i q_j$	$g_{\mathrm{DM}}^4 e^{-2x\delta}$	$v_{ m rel}^2$	$ \mathcal{M} ^2 \sim rac{1}{3}[\mathbf{\bar{3}}] + rac{2}{3}[6]$	(✓)	$J_c = \alpha_{\mathbf{R}}(\eta_1 + \eta_2) - 2 + C_2(\eta_1 + \eta_2)$
$X_i X_i \to q_i q_i$	$g_{\rm DM}^4 e^{-2x\delta}$	$v_{ m rel}^2$	$ \mathcal{M} ^2 \sim [6]$	(••)	$S_{\rm BSF}(\zeta_S, \zeta_B) = \left(\frac{2\pi}{1-e}\right)$
$X_i X_j^\dagger \to q_i \bar{q}_j$	$_{j} (\alpha g_{\rm DM}^2 + \beta g_s^2)^2 e^{-2x\delta}$	$v_{ m rel}^2$	$egin{aligned} \mathcal{M} ^2 &\sim f_1 \left(g_{ ext{DM}}, g_s ight) \left[1 ight] \ &+ f_8 \left(g_{ ext{DM}}, g_s ight) \left[8 ight] \end{aligned}$	 ✓ 	For attractive potentia
$X_i \chi \to q_i A$	$g_{\rm DM}^2 g_{\rm gauge}^2 e^{-x\delta}$	$\operatorname{const.}$	none	×	$S_{\rm BSF} \sim v_{\rm rel}^{-1}$

We take only singlet states for this work
Capture into ground state

$$(nlm) = (100)$$
 at a given representation **R**
 $\sigma_{\mathbf{k} \to \{100\}} v_{rel} = \frac{\pi \alpha_s^{\mathrm{BSF}} \alpha_g^B}{\mu^2} \frac{2^7 C_2(\mathbf{R})}{3 d_{\mathbf{R}}^2} f_c S_{\mathrm{BSF}}(\zeta_S)$
 $f_c = d_{\mathbf{R}}^2(\eta_1^2 + \eta_2^2) - 2 + C_2(\mathrm{adj}) \left[d_{\mathbf{R}} C_2(\mathbf{R}) - \frac{C_2(\mathrm{adj})}{2} \right] \left(\frac{d_{\mathbf{R}}}{d_{\mathbf{R}}} \right)$
 $S_{\mathrm{BSF}}(\zeta_S, \zeta_B) = \left(\frac{2\pi \zeta_S}{1 - e^{-2\pi \zeta_S}} \right) (1 + \zeta_S^2) \frac{\zeta_B^4 e^{-4\zeta_S \operatorname{arcce}}}{(1 + \zeta_B^2)}$

For attractive potentials and small velocities

$$S_{\rm BSF} \sim v_{\rm rel}^{-1}$$

• X-X* capture into a singlet Bound State

Thermal Average

$$\langle \sigma_{\rm BSF} v_{\rm rel} \rangle = \left(\frac{\mu}{2\pi T}\right)^{3/2} \int {\rm d}^3 v_{\rm r}$$

Bounds states once formed can

- particles and BSP is a constant.
- 2. Directly decay into radiation. Binding particles eventually decay into radiation

$$\langle \sigma_{\rm BSF} v_{\rm rel} \rangle_{\rm eff} \equiv \langle \sigma_{\rm BSF}^{[\mathbf{8}] \to [\mathbf{1}]} v_{\rm rel} \rangle \; \frac{\Gamma_{\rm dec}[\mathbf{1}]}{\Gamma_{\rm dec}[\mathbf{1}] + \Gamma_{\rm ion,[\mathbf{1}]}} -$$

1. Can lonize and dissolve into their constituents by energetic gluons the plasma. Net number of constituent

Large temperatures dominated by Ionisation Low Temperatures dominated by decay

Calculation of the Relic Density

We adjusted micrOMEGAs 5.2.7 such that

- the Sommerfeld effect is included for colored scalars up to the adjoint representation
- Bound state effects are included for colored scalars up to the adjoint representation

Determine $g_{DM,0}$ for each data point (M_{χ}, Δ) such that DM is *not* overproduced.

For instance, we find $g_{DM,0}(M^{u.b.},0) = \sqrt{4\pi}$ for

Constraints on the Model : Direct Detection

- Wilson coefficients of the effective DM-q/DM-g interaction are RGE evolved from $\mu \sim M_X$ to $\mu \sim {
 m GeV}
 ightarrow$ factor ~ 2 on amplitude level. [Mohan et. al (2019)]
- 1-loop or velocity suppressed SI contribution typically more constraining than spin-dependent limits (for coannihilating regions).

Strong constraints for small mass splittings.

Constraints on the Model

Exclusion Limits from Direct Detection

- BSF has a sizable impact for small mass splittings.
- Shift in largest allowed mass from $M_{\chi} \sim 1 \,{
 m TeV}$ to $M_{\chi} \sim 2.5 \,{
 m TeV}$ for $\Delta
 ightarrow 0$.
- Viable region for $\Delta \sim 100 \, {\rm GeV}$ slightly enlarged.

mass splittings. $M_{\chi} \sim 1 \,{
m TeV}$ to $M_{\chi} \sim 2.5 \,{
m TeV}$ for $\Delta
ightarrow$ itly enlarged.

Constraints on the Model : Collider Constraints

Prompt Searches :

- mono-jet + $\not{\!\!E}_T$ [Atlas (2021)]
- multi-jet + \not{E}_T [Atlas (2020)]

- Heavy Stable Charged Particle (HSCP) searches
- **Displaced Vertices**

- pair production of the colored mediators (\tilde{q}) , followed by their decay into dark matter (χ) plus a quark;
- associated production of \tilde{q} with χ ; and
- pair production of the dark matter in association with a jet from initial state radiation, $pp \to \chi \chi j$.

Summary of the constraints

- The Sommerfeld effect and bound state formation (BSF) arise for long range interactions in a dark sector
- BSF and subsequent bound state decay into SM particles efficiently provides an additional DM annihilation channel
- We have analyzed a model of colored coannihilation (Simplified t-channel: S3M-uR) using a modified micrOMEGAs version.
- The coannihilating region strongly impacted by non-perturbative effects. Viable paramter space involving tiny couplings of DM to the SM is shifted from 1 TeV to 2.5 TeV
- Direct Detection constrains a large part of the co-annihilating DM. • Prompt searches at the LHC constrain large mass gaps between parent particle and DM. • For small mass gaps, long lived particle searches constrain a significant part of the parameter space

