

Detector Configurations in Simulations

ECCE Calorimetry Working Group May 4, 2021

Nicolas Schmidt (ORNL)

Calorimeter Setups in Fun4All - FHCAL

fun4all_eicdetectors/simulation/g4simulation/g4eiccalos/PHG4ForwardHcalSubsystem.cc

Forward HCAL:

- Baseline design based on the STAR forward update
- See [link] for more info
- Alternative designs being worked on (PSD) style, Dual-Readout (see later), ...?)
- Offset of center-cutout due to beampipe tilt available

۲

 \rightarrow partially recovers high n

no support structures and services implemented

no light propagation and electronics simulation

steel material required for flux return

calibration factors not yet determined

tower material

interaction length pseudorapidity global position

FHCAL

 $10 \times 10 \times 81 \text{ cm}^3$ (2044 towers) 38 layers: 20mm Fe and 2.3mm Sci 3mm WLS plates $L \sim 4.5\lambda$ $1.11 < \eta < 3.47$ 3.5 < z < 4.5mradius of ~ 2.62 m

Calorimeter Setups in Fun4All - FEMC

fun4all_eicdetectors/simulation/g4simulation/g4eiccalos/PHG4ForwardEcalSubsystem.cc

Forward EMCAL:

- Baseline design based on the PHENIX Shashlik ECal
- See [link] and [link] for more info
- Alternative designs being explored (crystal, other materials, ...)

۲

Calorimeter Performance in Fun4All - FHCAL/FEMC

- YR requirements:
 - ightarrow FHCAL: $\sigma/E pprox 50\%/\sqrt{E} \oplus 10\%$
 - ightarrow FEMC: $\sigma/E pprox$ (4 12)%/ $\sqrt{E} \oplus$ 2%
- Resolution from testbeams compared to Fun4All simulation performance for chgarged pions (FHCAL) and photons (FEMC)
- Clusterizer-dependence of resolution visible (best clusterizers MA and Template V1)
- Fun4All detectors over-perform

 → for physics studies artificially deteriorate
 performance to match test beam for
 individual detectors

 → largely attributed to lack of light
 propagation and electronics simulation

GeV 10

Calorimeter Setups in Fun4All - Dual Readout

 $\begin{tabular}{ll} \label{eq:linear} \end{tabular} $$ \end{tabular} $$$

Forward Dual Readout Calorimeter:

- Baseline design derived from IDEA concept
- ullet Replaces FEMC and FHCAL at high η
- See [link] for more info

OAK

• Tower design being worked on \rightarrow resolution of current design: $\sigma/E \approx 16\%/\sqrt{E} \oplus 2\%$

Calorimeter Setups in Fun4All - EEMC

min fun4all_eicdetectors/simulation/g4simulation/g4eiccalos/PHG4CrystalCalorimeterSubsystem.cc

e-side EMCAL:

- Baseline design based on the JLab PbWO₄ crystals
- See [link] for more info
- Alternative designs being explored
 → PbW0₄ (inner) and SciGlass (outer)
- YR performance requirement: $\rightarrow \sigma/E \approx 2\%/\sqrt{E} \oplus (1-3)\%$

alternative design currently being implemented

Caveats:

- no support structures and services implemented
- no light propagation and electronics simulation
- position/size not studied yet

interaction length pseudorapidity global position $\begin{array}{l} 2\times2\times18\ \mathrm{cm}^3\ (2900\ \mathrm{towers})\\ \mathrm{PbWO}_4\ \mathrm{crystals}\\ \mathrm{with}\ 90\mu\mathrm{m}\ \mathrm{carbon}\ \mathrm{shell}\\ L\sim20X_0\\ -3.77<\eta<-1.63\\ \mathrm{center}\ \mathrm{at}\ -1.7\mathrm{m}\ \mathrm{from}\ \mathrm{IP}\\ \mathrm{radial:}\ 7.8< r<65.6\mathrm{cm} \end{array}$

Calorimeter Setups in Fun4All - EHCAL

fun4all_eicdetectors/simulation/g4simulation/g4eiccalos/PHG4BackwardHcalSubsystem.cc

e-side HCAL:

- Baseline design based on the STAR forward update HCAL
- See [link] for more info
- Placeholder implementation for now! Position, size, design, etc not studied yet

• YR performance requirement: $\rightarrow \sigma/E \approx 45\%/\sqrt{E} \oplus 6\%$

Calorimeter Setups in Fun4All - CEMC

n~1

coresoftware/simulation/g4simulation/g4detectors/PHG4CylinderSubsystem.cc

Central EMCAL:

- See [link] for more info
- Alternative designs being explored (W/Cu/SciTile, ...)
- YR performance requirement: $\rightarrow \sigma/E \approx (10 - 12)\%/\sqrt{E} \oplus (1 - 3)\%$

pseudorapidity

global position

 $|\eta| < 0.85$

92 < r < 116cm

Caveats:

in-depth performance studies for EIC needed

F. Bock & N. Schmidt (ORNL)

Detector Simulations

May 4, 2021 7 / 10

Calorimeter Setups in Fun4All - CHCAL

coresoftware/simulation/g4simulation/g4detectors/PHG4InnerHcalSubsystem(PHG4OuterHcalSubsystem).cc

Detector Simulations

FIC

OHCAL Tile 2

Calorimeter Setups in Fun4All - TTL

coresoftware/simulation/g4simulation/g4detectors/PHG4SectorSubsystem.cc

Timing and Tracking Layers (TTL):

- Baseline design based on Low Gain Avalanche Diodes (LGADs)
- See [link] for more info
- Pitch, dimensions and placement being explored
 - \rightarrow forward disks and central barrels possible

Calorimeter Setups in Fun4All - ECCE full

fun4all_eicmacros/detectors/Modular/Fun4All_G4_FullDetectorModular.C

Full detector in Fun4All:

- Tracking detectors:
 - \rightarrow silicon trackers central and forward
 - \rightarrow alternative TPC in central region
 - \rightarrow GEM trackers
- PID detectors:
 - \rightarrow forward RICH

Physics performance should be evaluated with all detector systems.