Connecting Observables with High-density / Saturation Phenomena

Bo-Wen Xiao

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen

EICUG Summer 2021 Meeting

Saturation Physics (Color Glass Condensate)

QCD matter at extremely high gluon density

- Follow Larry's insights (Monday) on overview of high density gluons.
- Gluon density grows rapidly as x gets small.
- Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine ⇒ Non-linear QCD dynamics (BK/JIMWLK) ⇒ saturation in gluon distributions (ultra-dense gluonic matter).
- Multiple Scattering (MV model) + Small-x (high energy) evolution

A Tale of Two Gluon Distributions

Two gauge invariant TMD operator def. [Bomhof, Mulders and Pijlman, 06] • Link [Dominguez, Marquet, Xiao and Yuan, 11] • Link I. Weizsäcker Williams distribution: conventional density

$$xG_{WW}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \operatorname{Tr}\langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

II. Color Dipole gluon distributions:

$$xG_{\rm DP}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \operatorname{Tr}\langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle$$

Modified Universality for Gluon Distributions:

	Inclusive	Single Inc	DIS dijet	γ +jet	dijet in pA
xG_{WW}	×	×	\checkmark	×	 Image: A set of the set of the
$xG_{\rm DP}$	✓	 ✓ 	×	√	 ✓

 $\checkmark \Rightarrow$ Apppear.

 $\times \Rightarrow$ Do Not Appear.

Embedding small-x gluon in 3D Tomography

Wigner distributions [Belitsky, Ji, Yuan, 04] ingeniously encode all quantum information of how partons are distributed inside hadrons.

List of observables at EIC

- CGC is elusive.
- Hunt it down via a set of observables
- List it from Inclusive \rightarrow Exclusive.

- **1** Inclusive cross-section: Geometrical scaling in eA and Q_{sA}
- **2** Single-inclusive $\gamma + p/A \rightarrow h(\text{Jet}) + X$: Quark TMD
- 3 Inclusive dijet or dihadron: WW gluon TMD.
- 4 Long range correlation: Origin of collectivity
- 5 Diffractive vector meson production: gluon GPD.
- **6** Diffractive dijet production: gluon Wigner distribution.

Inclusive Obserables

- Geometrical Scaling in DIS: All data of $\sigma_{tot}^{\gamma^* p}$ with $x \le 0.01$ and $Q^2 \le 450 GeV^2$ plotting as function of a single variable $\tau = Q^2/Q_s^2$ falls on a curve.
- What about eA collisions at EIC? $Q_{sA}^2(x)$

- [Golec-Biernat, Stasto, Kwiecinski,01]: $Q_s^2(x) = (x_0/x)^{\lambda} \text{GeV}^2$ with $x_0 = 3.04 \times 10^{-3}$ and $\lambda = 0.288$.
- [Munier, Peschanski, 03; etc]: explained by small-*x* framework.
- [Kovchegov, Pitonyak, Sievert, 16, 17] Link Polarized case: g_1 structure function at small-x and $\Delta \Sigma$.

SIDIS and new progress

- [Mueller, 99; Marquet, Xiao, Yuan, 09] SIDIS in the Breit frame: Measure quark k_T distribution.
- [Liu, Ringer, Vogelsang, Yuan, 19] Link Lepton + jet

New hard probe in the Lab frame: $l + p/A \rightarrow l' + \text{Jet} + X$

- Direct probe of quark TMDs. $\Delta \phi = \phi_J \phi_l \pi$
- Sivers: distortion due to proton's transverse spin S_T !
- Also sensitive to cold nuclear medium P_T broadening!

DIS dijet

Unique golden channel for the Weizsäcker Williams distribution.

- Back-to-back correlation $C(\Delta \phi)$: [Dominguez, Marquet, Xiao and Yuan, 11] [Zheng, Aschenauer, Lee and BX, 14]
- Due to soft gluon radiations, Sudakov resummation needs to be implemented. [Mueller, Xiao, Yuan, 13] Imk
- Due to linearly polarized gluon[Metz, Zhou, 11] \bullet Link: analog of elliptic flow v_2 in DIS. [Dumitru, Lappi, Skokov, 15] \bullet Link

Perturbative expansions in dijet productions

- pQCD expansion breaks down in the back-to-back region.
- Appearance of large logarithms $L \sim \ln^2 \frac{P_{\perp}^2}{q_{\perp}^2}$ with $P_{\perp} \gg q_{\perp}$.
- Imbalance $\vec{q}_{\perp} \equiv \vec{p}_{1\perp} + \vec{p}_{2\perp}$, jet $P_{\perp} \sim p_{1\perp} \sim p_{2\perp}$.

Collectivity at EIC?

- Collectivity is everywhere in systems small and large!
- Final state vs Initial state interpretation. Not clear yet!
- Anisotropy of heavy mesons favors IS effect.
 [Zhang, Marquet, Qin, Wei, Xiao, 19]
- New results from UPC in PbPb collisions at LHC. (Mini-EIC)
- What about the collectivity at the EIC on the horizon?

v_2 Predictions in γA collisions from CGC

[Shi, Wang, Wei, Xiao, Zheng, 21] Link

- Photons can have a rich QCD structure due to fluctuation.
- Similarity between $\gamma^* A$ and pA collisions at high energy as far as high multiplicity events are concerned.

Explicit expressions for gluon GPDs

Small-x GPDs[Hatta, Xiao, Yuan, 17] \checkmark $F = F_0 + 2\cos 2\Delta\phi F_{\epsilon}$

$$\frac{1}{P^+} \int \frac{d\zeta^-}{2\pi} e^{ixP^+\zeta^-} \langle p'|F^{+i}(-\zeta/2)F^{+j}(\zeta/2)|p\rangle$$

= $\frac{\delta^{ij}}{2} x H_g(x, \Delta_\perp) + \frac{x E_{Tg}(x, \Delta_\perp)}{2M^2} \left(\Delta_\perp^i \Delta_\perp^j - \frac{\delta^{ij} \Delta_\perp^2}{2}\right) + \cdots,$

Helicity conserved: $xH_g(x, \Delta_{\perp}) = \frac{2N_c}{\alpha_s} \int d^2q_{\perp}q_{\perp}^2F_0$

Helicity flipping:
$$x E_{Tg}(x, \Delta_{\perp}) = \frac{4N_c M^2}{\alpha_s \Delta_{\perp}^2} \int d^2 q_{\perp} q_{\perp}^2 F_{\epsilon}$$

Gluon GPDs and DVMP $V = J/\Psi, \phi \cdots$

 $\gamma^*(q) + p/A(p) \to V(q - \Delta) + p/A(p + \Delta)$

- The latter diagram is dominant at small-*x* (high energy) limit.
- Widely studied[Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94; Kowalski, Teaney, 03; Kowalski, Motyka, Watt, 06; Kowalski, Caldwell, 10; Berger, Stasto, 13; Rezaeian, Schmidt, 13]...
- Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H. Mantysaari, 11; Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15; Lappi, Mantysaari, Schenke, 16]...;
- NLO[Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16]

Probing gluon GPD at small-x

DVCS and DVMP [Mantysaari, Roy, Salazar, Schenke, 20] Link

$$\frac{d\sigma_{TT}}{dx_B dQ^2 d^2 \Delta_{\perp}} = \frac{\alpha_{em}^3}{\pi x_{Bj} Q^2} \left\{ \left(1 - y + \frac{y^2}{2}\right) \left(\mathcal{A}_0^2 + \mathcal{A}_2^2\right) + (1 - y) 2\mathcal{A}_0 \mathcal{A}_2 \cos(2\phi_{\Delta l}) \right\}$$

- A_0 : helicity conserved amplitude; A_2 : helicity-flip amplitude
- Use lepton plane as reference, one can measure angular correlations.
- $\cos 2\phi_{\Delta l}$ correlation is sensitive to the helicity-flip gluon GPD xE_{Tg} .

Diffractive vector meson production

Sensitive to proton fluctuating shape. (Variance) [Mantysaari, Schenke, 16; Mantysaari, Roy, Salazar, Schenke, 20] $rac{d\sigma_{
m incoh}}{d\hat{t}} \sim \langle \left| \mathcal{A} \right|^2
angle - \left| \langle \mathcal{A}
ight
angle
ight|^2$

■ Good-Walker: measure of fluct.

Can we measure Wigner distributions?

- Can we measure Wigner distribution/GTMD? Yes, we can!
- Diffractive back-to-back dijets in *ep/eA* collisions. [Hatta, Xiao, Yuan, 16]
- Further predictions of asymmetries due to correlations.

$$xW_g^T(x, \vec{q_\perp}; \vec{b_\perp}) = xW_g^T$$
 Symmetric part
+ $2\cos(2\phi)xW_g^{\epsilon} + \cdots$ Anisotropies

Study of the elliptic anisotropy.[Mäntysaari, Mueller, Salazar and Schenke, 20] Link

CMS: Dijet photoproduction in UPC (PbPb)

$\gamma + \mathrm{Pb} \to \mathrm{Jet} + \mathrm{Jet} + \mathrm{Pb}$

- Preliminary analysis Link [CMS-PAS-HIN-18-011]
- 2 Large asymmetries observed!
- 3 Indicate additional sources ?

Asymmtries due to final state gluon radiations are important. [Hatta, Xiao, Yuan, Zhou, 21]

Contributions from final state gluon radiations

Consider soft gluon radiations near jet cone in $\gamma A/p \rightarrow q\bar{q} + A/p$

$$g^{2} \int \frac{d^{3}k_{g}}{(2\pi)^{3}2E_{k_{g}}} \delta^{(2)}(q_{\perp} + k_{g\perp}) C_{F} \frac{2k_{1} \cdot k_{2}}{k_{1} \cdot k_{g}k_{2} \cdot k_{g}}$$
$$= \frac{C_{F}\alpha_{s}}{\pi^{2}q_{\perp}^{2}} \left[c_{0}^{\text{diff}} + 2\cos(2\phi) c_{2}^{\text{diff}} + \ldots \right].$$
$$c_{0}^{\text{diff}} = \ln \frac{a_{0}}{R^{2}} , \qquad c_{2}^{\text{diff}} = \ln \frac{a_{2}}{R^{2}} .$$

Observed asymmetry should includes initial and final state contributions!

Summary

- EIC will be the First eA collider.
- There is a wide range of observables at EIC for small-*x* physics.
- Inclusive process → Exclusive process: more information, however, more demanding and challenging in theory and exp.
- EIC will provide us data with unprecedented precision, and possibly compelling evidences for gluon saturation (CGC).

