Hadron Polarimetry: tests @ RHIC

W. Schmidke EICUG mtg. 05.08.21

Polarimeters @ RHIC → EIC: challenges are expected

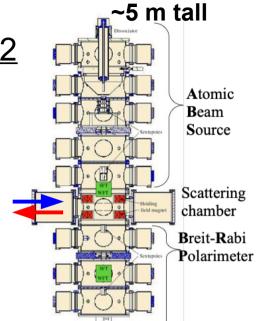
- Brief review*: RHIC polarimeters
 - polarized proton (Hjet) absolute polarimeter
 - proton-carbon (pC) relative polarimeter
- Expected challenges → tests @ RHIC
 - 1) Backgrounds to signal events → 2nd detector layer tests
 - 2) ³He breakup → fragment tagging tests
 - 3) Carbon target lifetime → test new materials
- Timeline

*more details RHIC & EIC polarimetry,

CFNS workshop "Beam Polarization and Polarimetry at EIC", June 2020:

https://indico.bnl.gov/event/7583/contributions/38670/attachments/29062/45020/EIC_Polar_Wrkshp_RHIC2EIC.pdf

RHIC polarimeters


Hjet absolute polarim. @ RHIC IP12

Polarized atomic H source

P_{target} ≈ 96% (Breit-Rabi polarim.)

Beams cross but don't collide inside target / scattering chamber

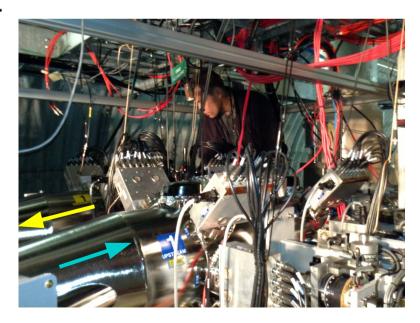
Low rate: one absolute P_{beam} / RHIC fill

pC relative polarim. ~70 m from RHIC IP12

- High rate: several P_{beam} / RHIC fill ⇒ dP/dt
- C target passed across beam
 - \Rightarrow transverse polar. profile P(x,y)
- P scale calibrated pC/Hjet normalization

Absolute Polarimeter (H-jet)

Pol. Proton Source LINAC BOOSTER


AC Dipole

Cold

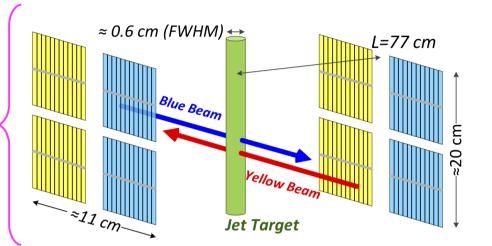
RHIC

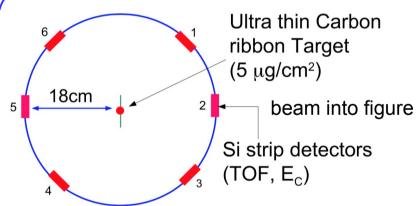
pC Polarimeter

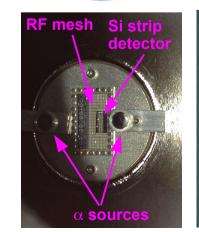
RHIC polarimeter detectors, PID

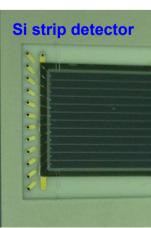
 Polarimetry via Single Spin azimuthal Asymmetry: dN/dφ ∝ 1 + P·A_N·sin(φ)

<u>Hjet:</u> elastic pp→pp

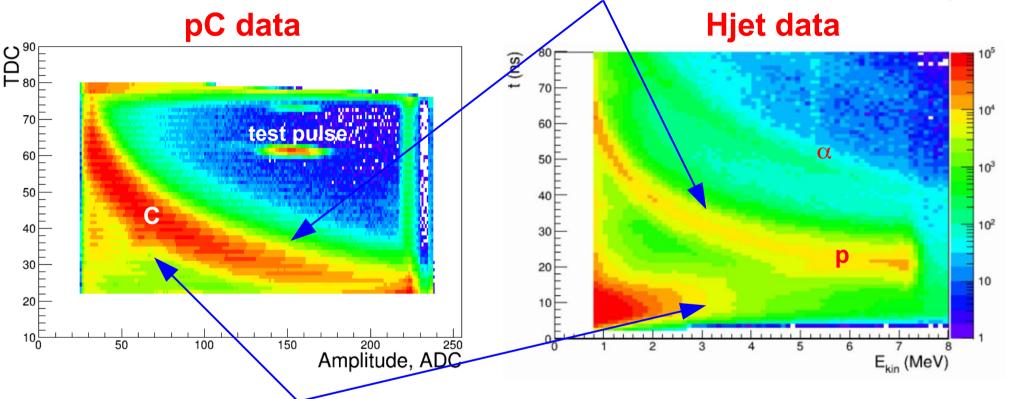

- Si strip detectors L/R beams
- Measure: ADC → kinetic E
 TDC → TOF


<u>proton-Carbon:</u> elastic C→pC

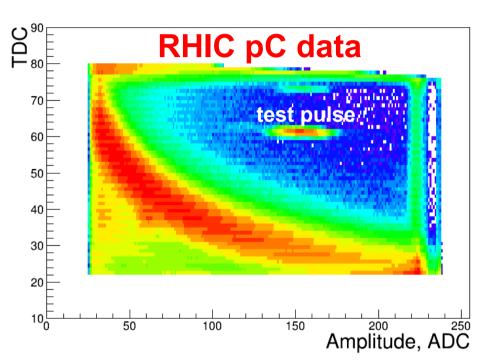

- 6 Si strip detectors around beam
- Measure: ADC → kinetic E
 TDC → TOF

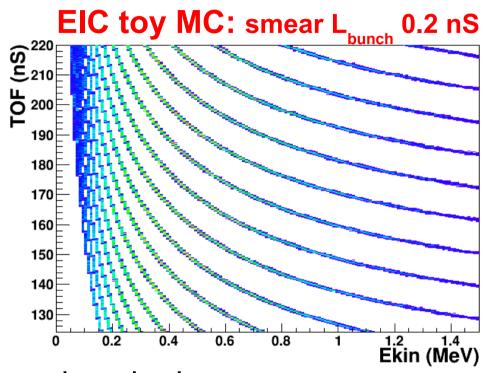

Particle ID

- Via non-relativistic TOF ∝1/√E_{kir}
- Hjet: select protons from pp→pp
- pC: select carbons from pC→pC



1) RHIC polarimeters: backgrounds

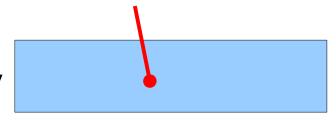

• TOF vs E_{kin}: signal in TOF ∝1/√E_{kin} "banana" curve: Carbons in pC Protons in Hjet

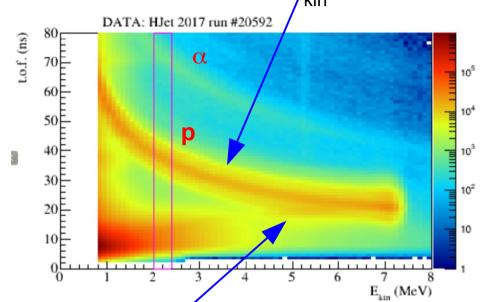


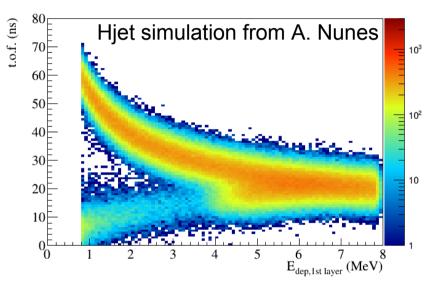
- Clear backgrounds below "banana" curves predominantly @ earlier TOFs
- Handled OK @ RHIC:
 - Hjet: from TOF, E_{kin} slices estimate bkg., subtract
 - pC: bkg. dilution calibrated in pC/Hjet normalization
- Problematic RHIC→EIC ➤

RHIC→EIC: 120→1160 bunches

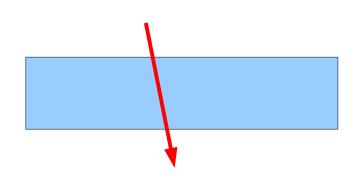
- Signal p,C TOF ~20-90 nS; bunch spacing RHIC 106 nS → EIC 11 nS
- Particles from several bunch xings in system simultaneously:




- Need to sort (Ekin,TOF) bands → bunch xings
- But for asymmetry measurements:
 - background: measured small but ≠0 asymmetry w.r.t. beam spin
 - overlaps w/ adjacent bunches
 - may be same/opposite +/- beam spin
 - dilute/enhance asymmetry
- A real mess; need way to minimize/eliminate backgrounds


Background sources

Guided by simulations


- "Banana" curve:
 - stop inside detector, E fully contained
 - follows TOF ∝1/√E_{kin} curve until cutoff 7-8 MeV

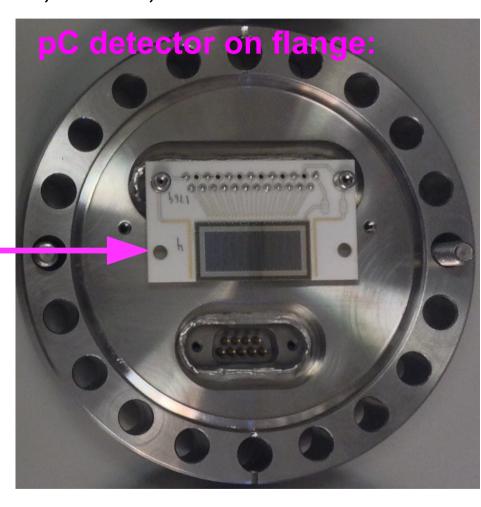
- Limb downward from right of "Banana" curve:
 - "punch-throughs" pass through detector
 - lower TOF \rightarrow higher $E_{kin} \rightarrow$ smaller dE/dx
- Accumulation @ lowest E_{kin}, TOF:
 - pileup of very high E_{kin} p, π

2nd detector layer tests: pC

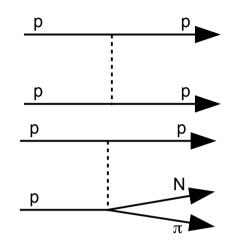
Preliminary test w/ Hjet detector done already
 2 det. layers had ceramic board between, E loss; results inconclusive

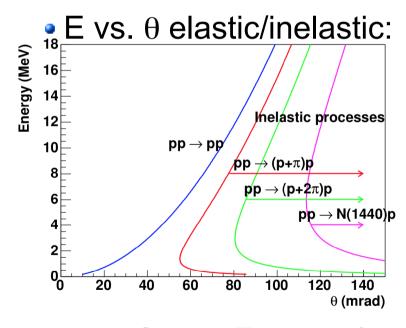
• pC detectors have ceramic cutout:

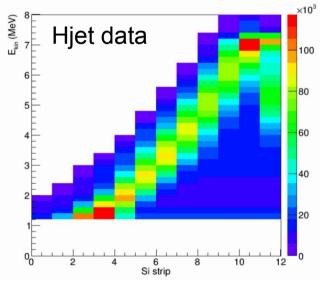
bottom view:


top view:

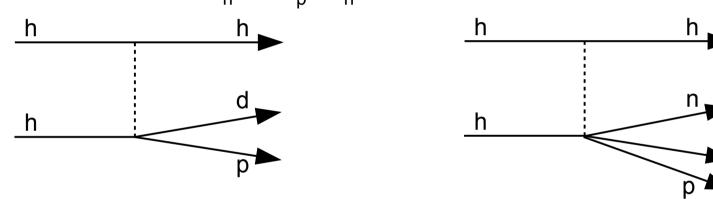
Plan RHIC Run22:


- New feedthrough in flange
- Mount 2nd det. (rotated 180°) above 1st
- Readout in existing chain: electronics, DAQ, software, ...
- Try in 2 (of 24) pC detector ports
- Data coming: "punch-throughs" in pC, compare simulations ...


minimal new materials: new flanges/feedthroughs, preamp box mods.


2) Absolute polarim.: elastic scat.

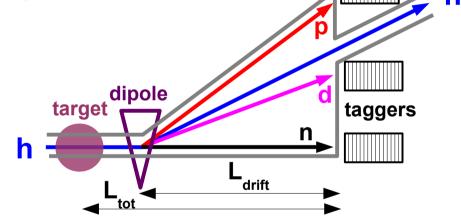
- Absolute polarimetry requires elastic scattering
 - Absolute proton polarimeter: pp→pp
 - Lowest lying p breakup state is p→Nπ,
 Δm = m_π ~ 140 MeV


- Select E range / strip: reject inelastic pp → ppX
- Sufficient (E,θ) resolution in recoil detector to distinguish mass gap Δm = m_π ~ 140 MeV

³He absolute polarimetry

Absolute ³He≡h polarimeter: hh→hh

- Lowest lying h breakup state is h \rightarrow dp, $\Delta m = m_d + m_p m_h = 5.5 MeV$
- Next is h \rightarrow npp, $\Delta m = m_n + 2m_p m_h = 7.7 MeV$



- If breakup vertex is target recoil: d,p,n may hit recoil detectors
 - rejected by energy-TOF PID h selection
- If breakup vertex is beam recoil: target h may hit polarim. detectors
 - recoil target h missing mass measurement needs
 - ~MeV resolution to distinguish from elastic, very challenging
- Can we tag beam breakup downstream from target?

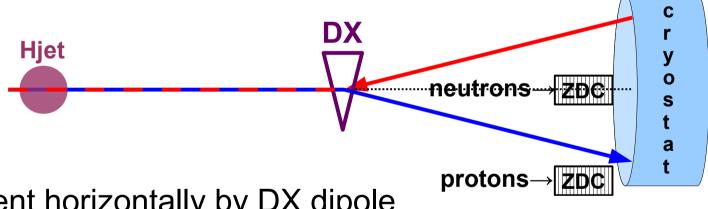
Tagging ³He (≡h) breakup @ EIC

- At breakup threshold, fragments travel colinearly with beam; fraction of beam rigidity R_h: R_d = 4/3R_h; R_p = 2/3R_h; R_n = ∞
- Dipole single bend approx., beam bent by θ_h : $\theta_d = \frac{3}{4}\theta_h$; $\theta_p = \frac{3}{2}\theta_h$; $\theta_n = 0$

Require: arrangement target → some dipole → drift space → taggers might look like:

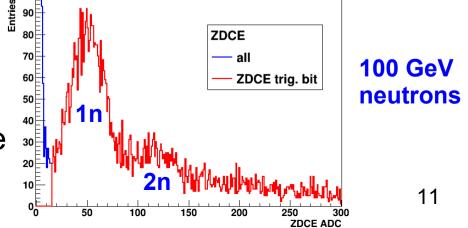
- Require: drift space L_{drift} long enough to get fragments out of beampipe vacuum and into taggers
- Fragments from breakup @ threshold define 0° point in taggers;
 breakup above threshold spread around this point
- Require: total target→tagger distance L_{tot} as small as possible, maximize tagger angular acceptance

Tests @ RHIC next years

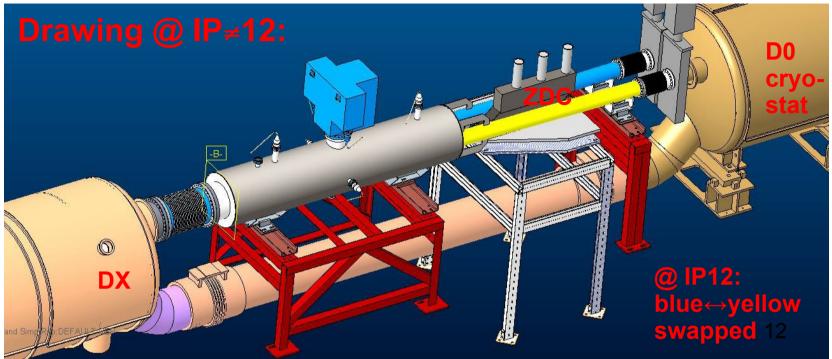

Can test h breakup with:

existing Hjet p target →

h beam (APEX session) →

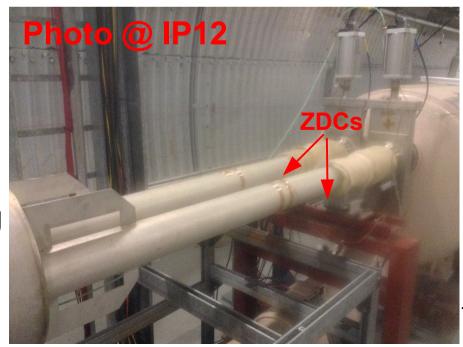

(APEX = Accelerator Physics EXperiments, in RHIC schedule)

Downstream (Blue beam direction) from Hjet @ IP12:



deuterons scrape beam pipe, no space for tagger

- Beams bent horizontally by DX dipole
- Space for taggers up to ~18 m, blocked beyond by cryostat
- 2 Zero Degree Calorimeters (ZDCs) from old Phobos experiment available
 - mediocre hadronic calorimeter
 - adequate for tagging



Tests @ RHIC next years

- Spare ZDCs between/outside beampipes after DX
- Readout into existing Hjet DAQ, correlate:
 - target recoils ↔ ZDC hits
- Data coming: ³He breakup tagging

minimal resources: install ZDCs, ~10 new signal/HV cables

3) C target lifetime

Targets
 often
 happily
 sweeping
 across
 beam:

- But eventually: few sweeps ☺
 dozens sweeps ☺
 100's sweeps ☺
- Targets break

@ RHIC

- Simulation: target heating via beam dE/dx, RF
- Heated target sublimates away
- Correctly predicts best observed target lifetimes

@ EIC

- Higher: total beam current → dE/dx heating bunch frequency → RF heating
- Simulation predicts lifetime few seconds, sweeps; not viable

Need alternative

- Discussions w/ materials experts started (e.g. BNL CFN) no good options found yet
- Alternatives can be tested in RHIC pC polarimeters

Timeline

RHIC's final years

- Polarized proton runs 2022 (start Nov. 2021) & 2024
 - any tests with Hjet, pC polarimeters as discussed here, others we think of
- Heavy ion runs 2023 & 2025
 - AGS w/ polarized protons @ 24 Gev available behind RHIC fills
 - AGS has a pC polarimeter can do lower energy pC tests (2nd det. layer, targets. ...)
- Will exploit opportunities @ RHIC → EIC polarimetry R&D