ECCE Physics Benchmarks Team IB Meeting Report

May 24th, 2021

Carlos Muñoz, Rosi Reed

Outline

- Physics Team Structure
- Communication Channels
- Second Simulation Tutorial
- Simulation Working Group
- Physics Priorities
- PWG Updates

Physics Team Working Groups

Inclusive reactions:

Tyler Kutz (MIT), TBD

• Electroweak and BSM:

Sonny Mantry (UNG), Xiaochao Zheng (UVa)

Semi-inclusive reactions:

Ralf Seidl (RIKEN), Charlotte Van Hulse (IJCLab Orsay)

Jets and Heavy Flavor:

Cheuk-Ping Wong (LANL), Wangmei Zha (USTC)

• Exclusive Reactions:

Rachel Montgomery (Glasgow), Julie Roche (OU)

Diffractive & Tagging:

Wenliang Li (W&M), Axel Schmidt (GWU)

Simulations:

Cameron Dean (LANL), Jin Huang (BNL)

Communication channels

Wikipage: https://wiki.bnl.gov/eicug/index.php/ECCE Physics

Open Tasks https://wiki.bnl.gov/eicug/index.php/Open_Tasks

Mailing list: <u>ecce-eic-phys-l</u>

<u>Mattermost channels</u>: instant messaging

<u>Discourse:</u> forum-style format

Physics Working Group Meetings: https://indico.bnl.gov/category/346/

Physics Team: Mondays at 9:30 AM & 9:00 PM

- Jets & HF: Tuesdays at 11:00 AM
- Exclusive Reactions: Fridays at 10:00 AM
- Diffractive & Tagging: Wednesdays at 12:00 PM
- BSM & Electroweak: Tuesdays at 9:30 AM, Wednesdays 9:00 PM
- Inclusive Reactions: <u>Kick off meeting today</u> at PM + Wednesday 9:00AM
- Simulation Office Hours: Alternating between Tuesdays 2PM and Mondays 8PM
- Announcements/reminders sent to <u>ecce-eic-phys-l</u> mailing list

Second Simulation Tutorial

Second Simulation Tutorial Friday May 21st

Slides and Recording can be found at: https://indico.bnl.gov/event/11719/

Topics and Speakers:

- Computing resources for ECCE Cristiano Fanelli (MIT)
- Simulation workflow: from MC input samples to output DSTs Cameron Dean (LANL)
- Structure/content of eval trees and DST files Jin Huang (BNL)
- An example of physics analysis using the evaluators Ralf Seidl (RIKEN)
- How to create/modify and analysis module for your study- Joe Osborn (ORNL)
- An example of a physics analysis workflow including the far-forward region Wenliang Li (W&M)
- General Q&A (Computing + Simulations Team)

Simulation working group

1st test production completed! (3 sets of 1M events for testing purposes)

Sample	Generator	Beam Parameters	Path	Notes	
"Min-Bias"	Pythia6	ep, 10 GeV x 250 GeV	/sphenix/user/cdean/ECCE/DST_files/general/pythia6_ep/	Run using internal Fun4All generator	
SIDIS	Pythia6	ep, 18 GeV x 100 GeV	/sphenix/user/cdean/ECCE/DST_files/SIDIS/pythia6/ep_18x100/	EIC-smear tree input	
HF & Jets	Pythia6	ep, 10 GeV x 100 GeV	/sphenix/user/cdean/ECCE/DST_files/HFandJets/pythia6/ep_10x100/	EIC-smear tree input	

Details at: https://wiki.bnl.gov/eicug/index.php/ECCE Simulations Working Group#Production Status

Sim+Computing team cross check production results at MIT BATES vs BNL SDCC

- Test results for SIDIS track p_T spectrums are identical
- Next is to check possibilities of a simulation set to run at MIT

A large sample (>1M tracks) electron line shape scan run w/full detector sim -T. Kutz

- Inclusive measurements can be factorized with line shape in full sim event generator in fast simulation → high stat. inclusive sample
- Major improvement over the YR

PWG/DWG are encouraged to run directly which speed up the development cycle

See Bill (Wenliang) Li's talk @ sims workshop as an example

Physics Priorities

Physics group is working on the outline of the proposal requires prioritization

Some discussion can be found at: https://indico.bnl.gov/event/11937/

Table from Yellow Report – Map observables to main physics topics

Processes	Inclusive	Semi-Inclusive	Jets,	Exclusive	Diffractive,
Topics			Heavy Quarks		Forward Tagging
Global properties	incl. SF	h, hh	jet, Q	excl. $Q\overline{Q}$	incl. diffraction,
& parton structure					tagged DIS on D/He
Multidimensional		h	jet, di-jet,	DVCS,	
Imaging			jet+h,	DVMP,	
imaging			$\mathbf{Q},\mathbf{Q}\overline{\mathbf{Q}}$	elast. scattering	
	incl. SF	h, hh	$\begin{array}{c} {\rm jet,\ di\text{-}jet,} \\ {\rm Q,\ Q\overline{Q}} \end{array}$	coh. VM,	diffr. SF, incoh. VM,
Nucleus				di-jet, h, hh,	di-jet, h , hh ,
				D/He FF	nucl. fragments
Hadronization		h, hh,	jet, Q, $Q\overline{Q}$		
Hadromzation		$_{ m jet+h}$			
Other fields	incl. SF with e^+ ,	charged curr. DIS,	$\sigma_{\gamma A}^{ m elast}$	$\sigma_{\gamma A}^{ m diffr}$	
Other fields	$\sigma_{\gamma A}^{ m tot}$	$\sigma_{\gamma A o h X}$		$\sigma_{\gamma A}$	

Physics Priorities

Simulation assumption will be a luminosity of 10 fb⁻¹

Imaging and parity → 100 fb⁻¹

Early science (first results) under assumptions:

- 10 x 250 GeV, \sim 5 fb⁻¹ polarized e-p (g1 at low x) and \sim 2.5 fb⁻¹ e-A (% diffraction) Focus on physics topics, as oppose to processes:
- Mass
- Imaging (Momentum and Spatial)
- Spin & Flavor
- Saturation
- Emergent properties
- Hadronization
- BSM

Top Physics Priorities

Inclusive

- F2A @ low-x [Saturation, nuclei]
- A1p vs. x [Spin & Flavor, nucleon]
- A1n vs. x [Spin & Flavor, nucleon]
- Twist-3 gTq vs. x [Spin & Flavor]

SIDIS

- Quark Sivers function [Momentum imaging, nucleon]
- Sea quark helicities via SIDIS A1 A_{LL}
 measurements [Spin & Flavor, nucleon]

Electroweak and BSM

- Parity violating asymmetries
- Charged Lepton Flavor Violation

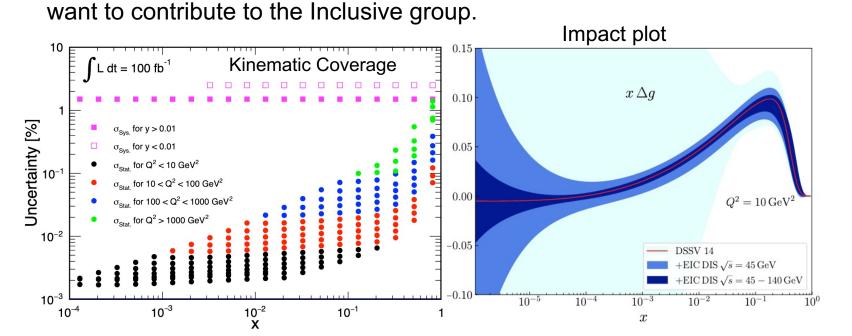
Heavy Flavors and Jets

- In medium correction for heavy flavor [Hadronization, nuclei]
- Di-hadron correlations [Saturation, nuclei]

Exclusive

- DVCS ep [Position Imaging, nucleon]
- DVCS eA [Position Imaging, nuclei]
- J/ψ production in ep [Position Imaging, nucleon]

Diffractive & Tagging

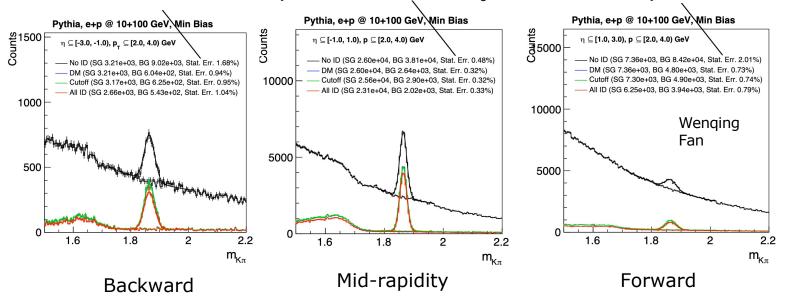

- A1n from double tagged ³He [Spin & Flavor]
- Diffractive meson (J/ψ) production [Saturation]
- Pion structure [Mass]
- Kaon FF [Mass]

In addition there are lower priorities – these may change as simulations progress

Inclusive WG

Kick-off Meeting is today at 2 pm EDT: https://mit.zoom.us/j/92661341001

New convener Tyler Kutz (tkutz@mit.edu, MIT) – Please contact him if you

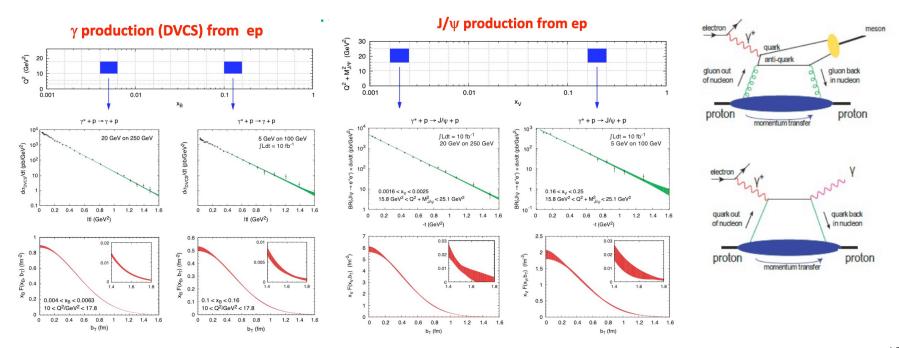


Jets & HF WG

https://indico.bnl.gov/event/11762/

Slide from Jets & HF meeting on May 18

Studies of PID for D⁰ (Check out slide for Λ_c and other details)



Discussion on potential mapping of Jet/HF observables with key physics topics

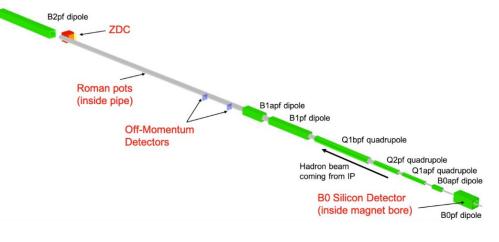
Exclusive Reactions WG

Simulations Tutorial caused cancelation of normal Friday Meeting

Selections from White paper of observables to be focused on for key physics topics

Diffractive & Tagging WG

Update at Simulations Tutorial (How to add a ZDC) - https://indico.bnl.gov/event/11719/contributions/49425/attachments/34696/56346/ECCE Simulation Tutorial Diff Tagg.pdf


https://indico.bnl.gov/event/11893/

Diffraction: A Killer App for IP8 - Mark Baker (MDBPADS)

Thoughts on secondary focus for IP8

Slide from Diffractive&Tagging meeting on May 19

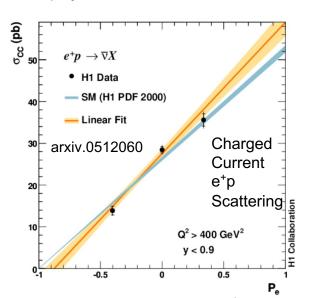
Discussion Wenliang Li (College of William and Mary)

All detector are there in fun4all

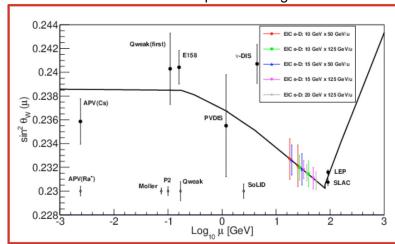
- macros/common/G4_hFarFwdBeamLine EIC
- Bottle neck: there is no design for these detectors
- ZDC can be used for hit study and is the priority (design by May 30)

BSM & Electroweak WG

PV physics: focus on Apv(e)


• ep: $F_{1,3}$ (γZ)

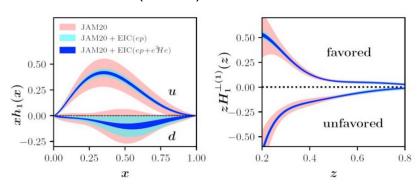
• eD: $F_{1,3}$ (γZ), $\sin^2 \theta_W$, C_1 , C_2


CLFV ($e \rightarrow t$): limit on leptoquarks

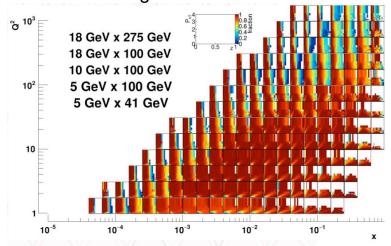
• e+p $\rightarrow \tau$ +X, potential to set limit on e $\rightarrow \tau$ transition

CC physics: CC xsec vs. Pe

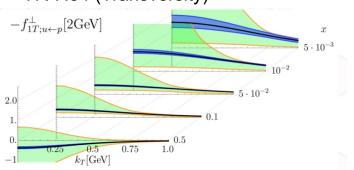
https://arxiv.org/abs/1612.06927


SDIS WG

https://indico.bnl.gov/event/11907/


Redo these YR analyses

- Need to take into account crossing angle and related acceptance/smearing effects
- Determine systematics via variation between perfect and smeared options
- Extrapolate from some x-Q² bins to all as input for impact studies


YR 7.53 (Sivers)

YR 8.29 – Figure can be made now

YR 7.54 (Transversity)

Summary & Outlook

- Much work is being done with all physics working groups meeting regularly
 - https://indico.bnl.gov/category/339/calendar
- Second Simulation Tutorial with details at:
 - https://indico.bnl.gov/event/11719/
- Observables need to be mapped to physics topics for the proposal
 - Span physics of the NAS Report and WP, based on observables from YR
- Next Physics Meeting will be right after the IB Meeting!
 - https://indico.bnl.gov/event/11611/

Back-Up

Timeline

- First Simulation Campaign (April 1st May 15th)
 - Initial simulation runs using existing implementation
 - Finish implementing ECCE setup
 - Agree on technology, main physics observable and arrange required event generators
- First Analysis Campaign (May June 15th)
 - Determine statistics
 - Iterate: simulation ← → analysis
- Final Production (June 15th August)
- Second Simulation Campaign (July 15th September 1st)
 - Analysis of simulation data to demonstrate physics extraction
 - Drafts of physics plots
- Proposal Writing (September 1st October 15th)
 - All physics 'plots' are done
 - Compose narrative around simulation results and selected technologies
- Proposal Deadline December 1st

