ECCE Physics Benchmarks Team IB Meeting Report

June 7th, 2021

Carlos Muñoz, Rosi Reed

Outline

- Communications
- Simulation Campaign Update
- Short PWG Updates
- Conclusions/Outlook

Communication channels

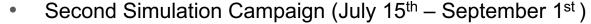
Wikipage: https://wiki.bnl.gov/eicug/index.php/ECCE Physics

Open Tasks https://wiki.bnl.gov/eicug/index.php/Open_Tasks

Mailing list: <u>ecce-eic-phys-l</u>

<u>Mattermost channels</u>: instant messaging

Discourse: forum-style format


Physics Working Group Meetings: https://indico.bnl.gov/category/346/

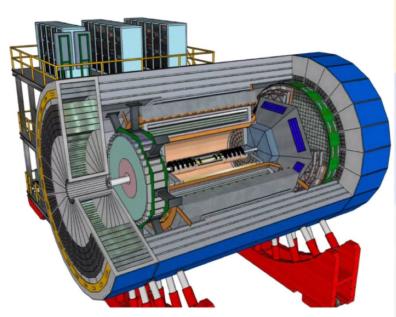
Physics Team: Mondays at 9:30 AM & 9:00 PM (All times in EDT)

- Jets & HF: Tuesdays at 11:00 AM
- Exclusive Reactions: Fridays at 10:00 AM
- Diffractive & Tagging: Wednesdays at 12:00 PM
- SDIS: Tuesday at 9:00AM
- BSM & Electroweak: Tuesdays at 9:30 AM, Wednesdays 9:00 PM
- Inclusive Reactions: Monday 2:00PM
- Simulation Office Hours: Alternating between Tuesdays 2PM and Mondays 8PM
- Announcements/reminders sent to <u>ecce-eic-phys-l</u> mailing list

Recall: Timeline

- First Simulation Campaign (April 1st May 15th)
 - Initial simulation runs using existing implementation
 - Finish implementing ECCE setup
 - Agree on technology, main physics observable and arrange required event generators
- First Analysis Campaign (May June 15th)
 - Determine statistics
 - Iterate: simulation ← → analysis
- Full Scale Production (June 15th August)

- Analysis of simulation data to demonstrate physics extraction
- Drafts of physics plots
- Proposal Writing (September 1st October 15th)
 - All physics 'plots' are done
 - Compose narrative around simulation results and selected technologies
- Proposal Deadline December 1st



Recall: General Detector Concept

ECCE

ECCE General Detector Concept

The ECCE detector concept is undergoing rapid development

ECCE ELECTRON ENDCAP STRAWMAN

Tracking: MAPS, Micro Pattern Gaseous Detectors (MPGD)

Electron Detection: PWO&SciGlass

- Inner part: PWO crystals (reuse some)
- Outer part: SciGlass (backup PbGI)

h-PID: mRICH

From yellow report

HCAL: Steel from magnet or Pb/Sc or Fe/Sc

- Not instrumented and only serve as flux return?
- Instrumented \w reduced thickness (lower energies)

ECCE CENTRAL BARREL STRAWMAN

<u>Tracking:</u> Silicon barrel tracker (optional Si/GEM hybrid)

Electron PID: SciGlass (backup: W/Sc (Pb/Sc) shashlik)

SciGlass remains to be demonstrated

- > Several backup options lower resolution though
- bandles as I Can

h-PID: hpDIRC & AC-LGAD

- Compact
- AC-LGAD never been shown for barrel configuration
- AC-LGAD backup: dE/dx (needs more space)

HCAL: magnet steel (reuse) - Fe/Sc

ECCE HADRON ENDCAP STRAWMAN

<u>Tracking:</u> MAPS, Micro Pattern Gaseous Detectors (MPGD) h-PID: dRICH&TOF

e/h separation: TOF & aerogel

TRD to separate electrons from high momentum hadrons?

Electron PID: W/ScFi, Pb/Sc or W/Sc shashlik

HCAL: Pb/Sc or Fe/Sc

 Alternative for improved resolution: dual readout, highgranularity

Detector Strawman – Electron Endcap

Tracking: MAPS, Micro Pattern Gaseous Detectors (MPGD)

Electron Detection: PWO&SciGlass

- > Inner part: PWO crystals
- > Outer part: SciGlass

h-PID: mRICH

> From yellow report

HCAL: Steel from magnet or Pb/Sc or Fe/Sc

- mRICH Detailed simulation ready in Fun4All, need to validate integration. Ongoing development of full reconstruction.
- HCAL Currently no HCal in the e-going direction

Detector Strawman - Hadron Endcap

Tracking: MAPS, Micro Pattern Gaseous Detectors (MPGD)

h-PID: dRICH&TOF

e/h separation: TOF & aerogel

Electron PID: W/ScFi, Pb/Sc or W/Sc shashlik

HCAL: Pb/Sc or Fe/Sc

- dRICH Working but not currently in the framework perhaps should be simulated as a gas volume
- e/h via TRD Not in the framework, need material distribution

Detector Strawman - Central Barrel

Tracking: Silicon barrel tracker

Electron PID: SciGlass (backup: W/Sc (Pb/Sc) shashlik)

h-PID: hpDIRC & AC-LGAD

- > AC-LGAD never been shown for barrel configuration
- > AC-LGAD backup: dE/dx (needs more space)

HCAL: magnet steel (reuse) - Fe/Sc

- hpDIRC Work on full simulation will not be completed by June 14th
- ePID fast geometry for SciGlass but full (blocked) geometry is in development and will take time.

Detector Strawman – Far Forward/Backward

FAR BACKWARD DETECTORS

- low-Q2 tagger
- Lumi-detector Project

Lepton polarimetry - Project

hadron polarimetry - Project

FAR FORWARD DETECTORS

- ZDC
- Roman Pots
- Off-momentum det.

B0-trackers

Lepton polarimetry - Project

hadron polarimetry - Project

- ZDC Needs to be validated
- Work on other detectors is ongoing
- Far Forward/Background Regions placed in vacuum with parameterization of beampipe

Immediate Timeline

No Show Stoppers for Simulation Campaign!

 Strategy - mix of full detector/fast geometry approximations → allows production to start for PWG while DWG can still develop subsystems

All DWGs asked to have their subsystems in fun4all by June 14th

- Most are in the EIC Build but not yet in the ECCE Configuration
- Groups need to validate geometry (no overlaps, etc)
- Thursday DWG Meeting: https://indico.bnl.gov/event/12079/

June 14th – June 21st Strawman Detector Validation

- Check that all detector modules compile
- Check Geometry (holes vs overlap)
- Integration Meeting TBD (June 17th?)

First Simulation will be ~10M Events with Particle Gun

Verify Resolution and Efficiency for Tracking and Calorimeter Detectors

Simulation Update

- Many Patches on Software due to rapidly evolving detector configuration
- Working on eA Simulations
- Beam crossing angle (25 mR) in by default
 - Need help in validating results
 - Once IP8 (35 mR) option is mature will develop a switch for the two geometries
 - This is not trivial detectors need to move, etc.
- Creating top level production scripts for simulation campaign
- Meta data for tagging configurations is in process

PWG Update (1/2)

Inclusive:

- Electron resolution and PID studies nearly completed
- Neutral current files produced with Djangoh for EW working group
- Need to generate charged current files
- Working closely with EW/BSM group

SDIS

 Ready for simulation campaign, will look at selections of Q² and x and then extrapolate

Jets/HF

- Jet analyses are already in fun4all work being done on ensuring all necessary information is in the event evaluator
- HF studies done w/fast sim, soon for full KF Particle is already incorporated into fun4all

PWG Update (2/2)

Exclusive:

- DVCS → Run for ep @MIT
- DVMP → Look at generating events
- J/ψ studies also straddles the D&T working group
- Diffractive and Tagging
 - Implemented realistic ZDC into fun4all
 - Coordinating/establishing preliminary positions of far forward detectors (kick-off meeting was last week!)
 - Testing JLab resources and documenting how-tos

BSM/EW

- Electron smearing studies completed
- Investigating unfolding studies currently

Conclusions/Outlook

- Full simulation campaign will soon be underway
 - Mix of full/fast sim to efficiently start production while allowing subsystem development to continue
 - Validation will be required
 - Stay tune for additional physics/detector/integration meetings!
 - Start with IP6 design due to its maturity
- Top physics priorities mapped observables ←→ physics topics
- PWG confirming evaluators have all necessary information
 - Can allow multiple PWG-specific trees from same generated DSTs for efficient work flow
- Finalizing PWG list of generators and number of events needed for campaign

Back-Up

Physics Priorities

Physics group is working on the outline of the proposal requires prioritization

Some discussion can be found at: https://indico.bnl.gov/event/11937/

Table from Yellow Report – Map observables to main physics topics

Processes	Inclusive	Comi Inclusivo	Jets,	Evolucivo	Diffractive,
Topics	Inclusive	Semi-Inclusive	Heavy Quarks	Exclusive	Forward Tagging
Global properties & parton structure	incl. SF	h, hh	jet, Q	excl. $Q\overline{Q}$	incl. diffraction, tagged DIS on D/He
Multidimensional Imaging		h	$\mathrm{jet,\ di\text{-}jet,} \ \mathrm{jet+h,} \ \mathrm{Q,\ Q\overline{Q}}$	DVCS, DVMP, elast. scattering	
Nucleus	incl. SF	h, hh	$\begin{array}{c} {\rm jet,\ di\mbox{-}jet,} \\ {\rm Q,\ Q\overline{Q}} \end{array}$	$\begin{array}{c} \text{coh. VM,} \\ \textbf{di-jet, h, hh,} \\ \textbf{D/He FF} \end{array}$	diffr. SF, incoh. VM, di-jet, h, hh, nucl. fragments
Hadronization		$egin{array}{ll} \mathbf{h}, \ \mathbf{hh}, \ \mathbf{jet} + \mathbf{h} \end{array}$	jet, Q, $Q\overline{Q}$		
Other fields	incl. SF with e^+ , $\sigma_{\gamma A}^{\rm tot}$	charged curr. DIS, $\sigma_{\gamma A \to h X}$		$\sigma_{\gamma A}^{ m elast}$	$\sigma_{\gamma A}^{ m diffr}$

Physics Priorities

Simulation assumption will be a luminosity of 10 fb⁻¹

Imaging and parity → 100 fb⁻¹

Early science (first results) under assumptions:

- 10 x 250 GeV, \sim 5 fb⁻¹ polarized e-p (g1 at low x) and \sim 2.5 fb⁻¹ e-A (% diffraction) Focus on physics topics, as oppose to processes:
- Mass
- Imaging (Momentum and Spatial)
- Spin & Flavor
- Saturation
- Emergent properties
- Hadronization
- BSM

Top Physics Priorities

Inclusive

- F2A @ low-x [Saturation, nuclei]
- A1p vs. x [Spin & Flavor, nucleon]
- A1n vs. x [Spin & Flavor, nucleon]
- Twist-3 gTq vs. x [Spin & Flavor]

SIDIS

- Quark Sivers function [Momentum imaging, nucleon]
- Sea quark helicities via SIDIS A1 A_{LL}
 measurements [Spin & Flavor, nucleon]

Electroweak and BSM

- Parity violating asymmetries
- Charged Lepton Flavor Violation

Heavy Flavors and Jets

- In medium correction for heavy flavor [Hadronization, nuclei]
- Di-hadron correlations [Saturation, nuclei]

Exclusive

- DVCS ep [Position Imaging, nucleon]
- DVCS eA [Position Imaging, nuclei]
- J/ψ production in ep [Position Imaging, nucleon]

Diffractive & Tagging

- A1n from double tagged ³He [Spin & Flavor]
- Diffractive meson (J/ψ) production [Saturation]
- Pion structure [Mass]
- Kaon FF [Mass]

In addition there are lower priorities – these may change as simulations progress

Summary & Outlook

- Much work is being done with all physics working groups meeting regularly
 - https://indico.bnl.gov/category/339/calendar
- Second Simulation Tutorial with details at:
 - https://indico.bnl.gov/event/11719/
- Observables need to be mapped to physics topics for the proposal
 - Span physics of the NAS Report and WP, based on observables from YR
- Next Physics Meeting will be right after the IB Meeting!
 - https://indico.bnl.gov/event/11611/