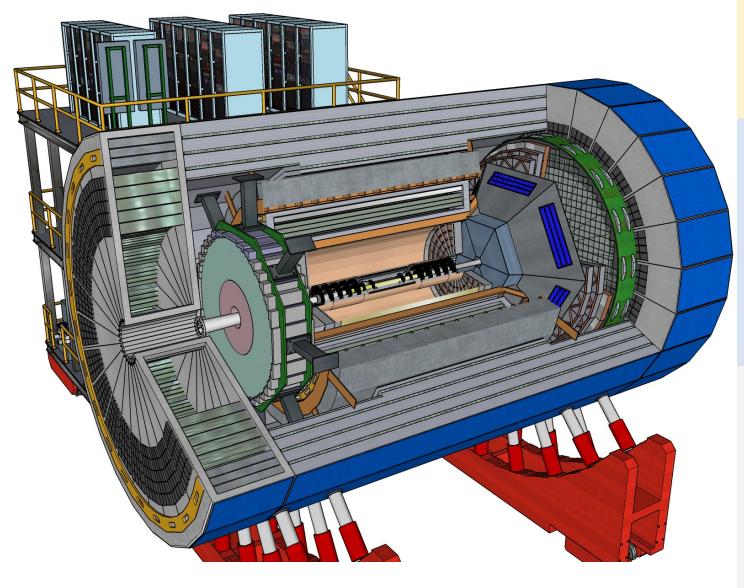
ECCE Bi-Weekly Meeting

Monday, May 7th 2021

€CC€ Consortium: May 7th

1.	AANL/Armenia*
2.	AUGIE
3.	BGU/Israel*
4.	BNL
5.	Brunel University*
6.	Canisius College
7.	CCNU/China*
8.	Charles U./Prague*
9.	CIAE
10.	CNU
11.	Columbia
12.	CUA
13.	Czech. Tech. Univ.
14.	Duquesne U.
15.	Duke
16.	FIU
17.	Georgia State
18.	Glasgow/Scotland*
19.	GSI/Germany*

1.	Hampton
2.	HUJI
3.	IJCLab-Orsay/France*
4.	IMP/China*
5.	Iowa State
6.	IPAS/Taiwan*
7.	JLab
8.	Kyungpook Natl. Univ./Taiwan*
9.	LANL
0.	LBNL/Berkeley
1.	Lehigh University
2.	LLNL
3.	Morehead State
4.	MIT
5.	MSU
6.	NCKU/Taiwan*
7.	NCU/Taiwan*
8.	NMSU
9.	NRNU MEPhI/Russia*
0.	NTHU/Taiwan*


41.	NTU/Taiwan*
42.	ODU
43.	Ohio U
44.	ORNL
45.	PNNL
46.	Pusan Natl. Univ.*
47.	Rice
48.	RIKEN/Japan*
49.	Rutgers
50.	Saha / India*
51.	SBU
52.	SCNU/China*
53.	Sejong U.
54.	TAU/Israel*
55.	Tsinghua U./China*
56.	Tsukuba U./Japan*
57.	CU Boulder
58.	UConn
59.	UH
60.	UIUC

61.	UKY
62.	U. Ljubljana/Slovenia*
63.	UNH
64.	USTC/China*
65.	UT Austin
66.	UTK
67.	UTSM/Chile*
68.	UVA
69.	Vanderbilt
70.	Virginia Tech
71.	Virginia Union
72.	Wayne State
73.	WI/Israel*
74.	WM
75.	Yonsei Univ.*
76.	York/UK*
77.	Zagreb U./Croatia*

GWU

20.

€CC€ Detector: previous

ECCE ELECTRON ENDCAP STRAWMAN

Tracking: MAPS, Micro Pattern Gaseous Detectors (MPGD)

Electron Detection: PWO&SciGlass

- Inner part: PWO crystals (reuse some)
- Outer part: SciGlass (backup PbGI)

h-PID: mRICH

From yellow report

HCAL: Steel from magnet or Pb/Sc or Fe/Sc

- Not instrumented and only serve as flux return?
- Instrumented \w reduced thickness (lower energies)

ECCE CENTRAL BARREL STRAWMAN

Tracking: Silicon barrel tracker (optional Si/GEM hybrid)

Electron PID: SciGlass (backup: W/Sc (Pb/Sc) shashlik)

- SciGlass remains to be demonstrated
- Several backup options lower resolution though

h-PID: hpDIRC & AC-LGAD

- Compact
- ➤ AC-LGAD never been shown for barrel configuration
- AC-LGAD backup: dE/dx (needs more space)

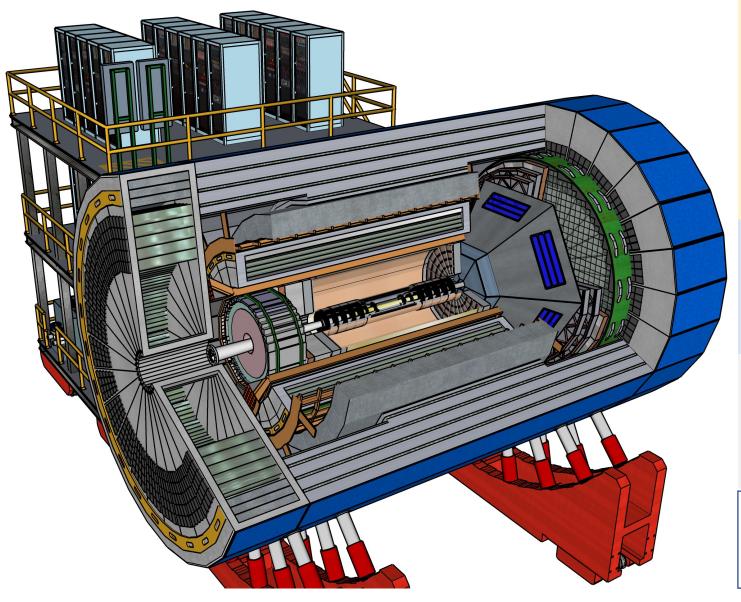
HCAL: magnet steel (reuse) - Fe/Sc

ECCE HADRON ENDCAP STRAWMAN

<u>Tracking:</u> MAPS, Micro Pattern Gaseous Detectors (MPGD)

h-PID: dRICH&TOF

e/h separation: TOF & aerogel


> TRD to separate electrons from high momentum hadrons?

Electron PID: W/ScFi, Pb/Sc or W/Sc shashlik

HCAL: Pb/Sc or Fe/Sc

Alternative for improved resolution: dual readout, highgranularity

€CC€ Detector: now

Red = preferred technology
Blue = preferred technology
\w some open questions

Black = still being discussed

ELECTRON ENDCAP

<u>Tracking:</u> <u>GEM / MPGD</u> Electron Detection:

- Inner part: PWO crystals (reuse some)
- Outer part: SciGlass (backup PbGI)

h-PID: mRICH

HCAL: Steel from magnet or Fe/Sc

- Not instrumented and only serve as flux return?
- Instrumented \w reduced thickness (lower energies)

CENTRAL BARREL

<u>Tracking:</u> Silicon barrel + forward tracker (optional Si/GEM hybrid)

<u>Electron PID:</u> SciGlass (backup: PbGl or W(Pb)/Sc shashlik)
h-PID: hpDIRC & AC-LGAD [progress: DIRC orientation ⊕]

HCAL: magnet steel (reuse) - Fe/Sc

HADRON ENDCAP

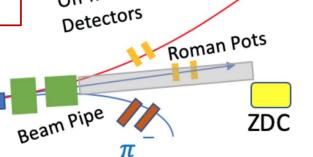
Tracking: GEM / MPGD
PID: dual-RICH & AC-LGAD

<u>Calorimetry:</u> standard W/ScFi + Fe/Sc

Upgrade: Dual Readout EM+Had Cal?

Example discussions:

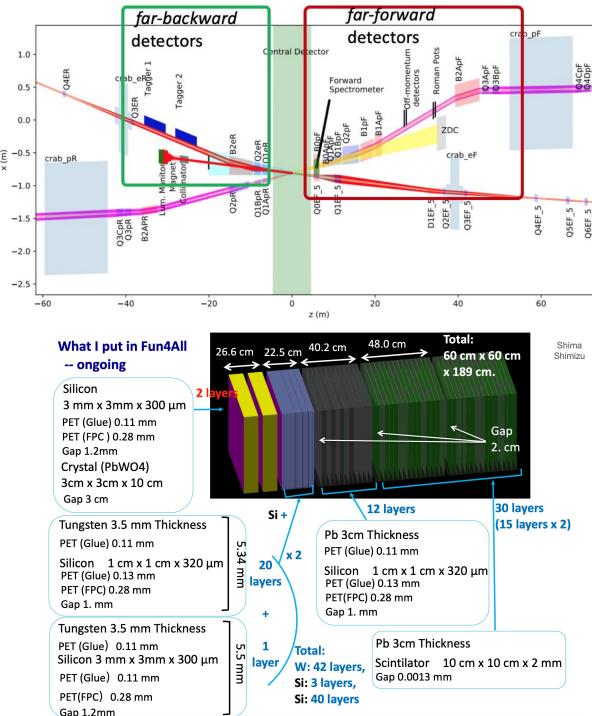
- Backup for AC-LGAD in barrel
- SciGlass ongoing R&D timeline
- Hadron Endcap calorimetry


€CC∈ Far Forward / Back

FAR FORWARD DETECTORS

- ZDC Si/W & PWO (SciGlass)
- Roman Pots Silicon sensors, AC-LGADs
- Off-momentum det. Silicon sensors
- B0-trackers **MAPS & timing layers** Lepton polarimetry

B0

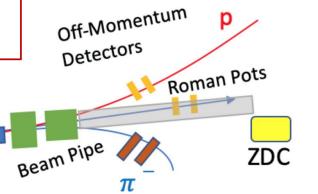

hadron polarimetry

Off-Momentum

FAR BACKWARD DETECTORS

- low-Q2 tagger
- Lumi-detector
 Lepton polarimetry
 hadron polarimetry

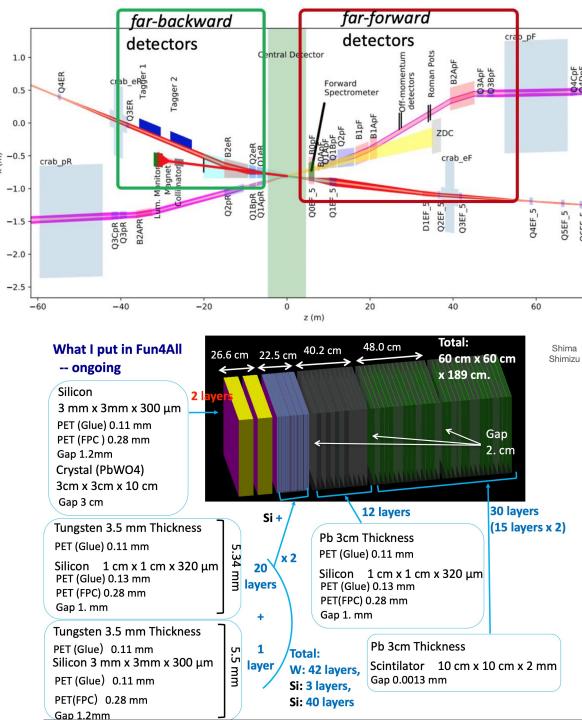
€ C ∈ Far Forward / Back


FAR FORWARD DETECTORS

- ZDC Si/W & PWO (SciGlass)
- Roman Pots Silicon sensors, AC-LGADs
- Off-momentum det. Silicon sensors
- B0-trackers MAPS & timing layers

B0

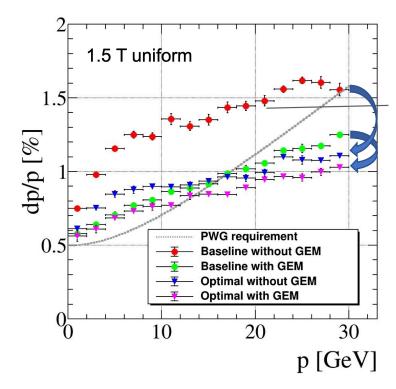
Lepten polarimetry-

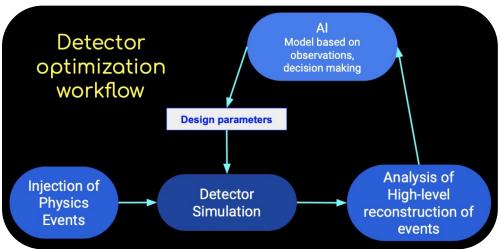

-hadren-polarimetry-

FAR BACKWARD DETECTORS

- low-Q2 tagger
- Lumi-detector-

Lepton polarimetryhadron polarimetry-

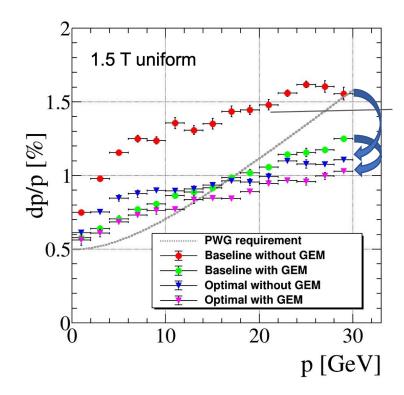


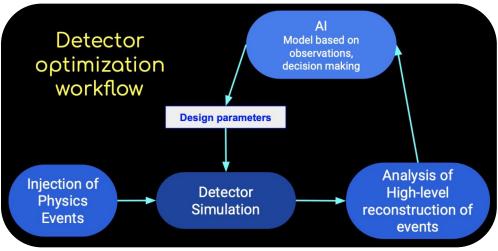

€CCE Detector

- DWGs proceeding with evaluation of leading technology alternatives.
- Converging on initial setup for first IP6 simulations champaign starting next week!
- Detector Team Group Meeting June 10th 11am to 2pm:
 - co-conveners will present latest evaluated technology options,
 - Focus on detectors choices to move forward with DAQ and determining optimal re-use,
 - https://indico.bnl.gov/event/12079/
- Still need to optimize performance / cost / risk with inputs from simulations.
- See DWG talk for details.

Al Optimization

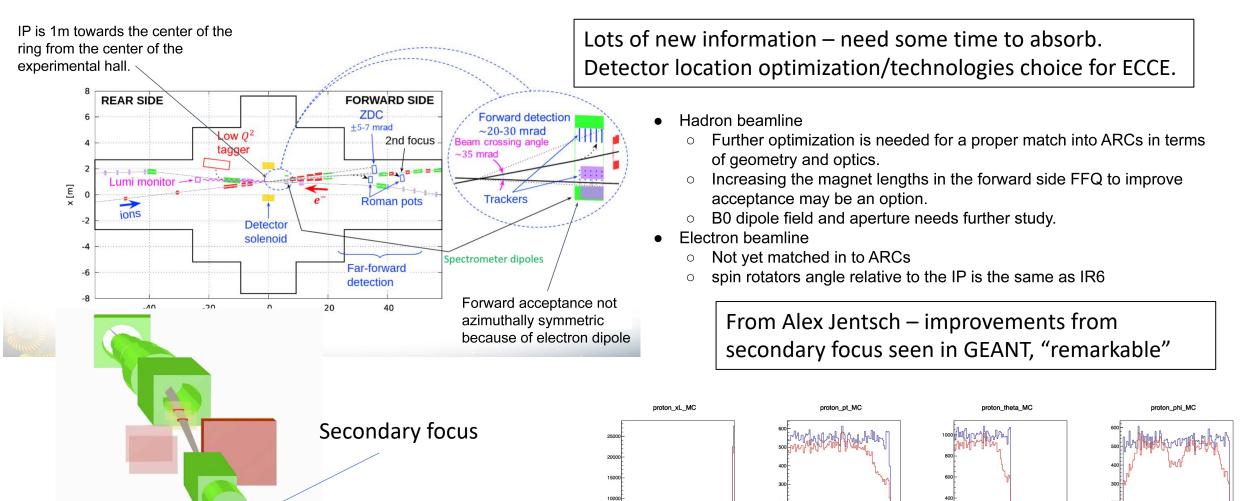
- Al WG is starting to optimize ECCE
- Building on existing experience (e.g. Dual RICH)
- Working from the inside out
- First ECCE-specific example: Tracker layer radii
- Pushing to optimize for PHYSICS as oppose of single detector element performance
- See AI talk in this meeting




Al Optimization

- Al WG is starting to optimize ECCE
- Building on existing experience (e.g. Dual RICH)
- Working from the inside out
- First ECCE-specific example: Tracker layer radii
- Pushing to optimize for PHYSICS as oppose of single detector element performance
- See AI talk in this meeting

EXCELLENT Opportunities:


- A. For collaborators to contribute and gain experience,
- B. For ECCE to showcase its novelty by integrating Al starting from its early design stage

IP8 Layout: Hot off the presses!

Meeting w/PM and proto-collaborations today: https://indico.bnl.gov/event/12068/

Nucleon Momentum Fraction, x

Polar Angle, θ [mrad]

ECCE Physics Simulations

- PWG have well defined analysis priorities and most relevant generators are ready,
- Groups learning to analyze Fun4All output,
- Identifying components where analysis algorithms still not implemented.
- Working with simulation experts to implement missing detector components.

€ C C Proposal Update: ECCE Godparents

Background:

- ECCE physics studies carried out in working reaction-focused groups (inclusive, semi-inclusive, exclusive etc.).
- ECCE proposal will present studies based on physics topics (mass, spin & flavor, emergent properties etc.).
- Each process-focused working group studies several physics topics (e.g. inclusive studies spin, emergent properties etc.)
- Don't have experts dedicated to looking at how well we cover each physics topic.
- Proposal will also be complemented by supplementary documents that will each cover an individual physics topic.

<u>Proposal:</u> appoint a 'godparent' (or two) for each physics topic.

Godparent responsibilities:

- Work with the process-focused working group to define priorities for studies based on three categories:
 - Studies most important to showcase our ability to deliver on EIC science as defined in the EIC white paper and NAS study report.
 - Most significant early results that can be obtained from 5 fp-1 of e-p @ 250x10 / e-A @ 110 x10.
- Draft the outline and text for the proposal section discussing the physics topic (in collaboration with the steering committee and proposal editorial and physics teams).

€ C C Communication \w Project

In one word: Excellent.

- Communication lines open via contact person (Rolf Ent) & direct discussions with relevant individuals.
- Standing 'update' meetings with project, EICUG, CORE and ATHENA.
- Example outcome:
 - Initial discussion on review process,
 - Costing and risk assessment guidance,
 - Equipment reuse guidance,
 - Today's IP8 design rollout,
 - ...
- All are invited to participate in cross-collaboration working groups on luminosity, calorimetry, etc.
- Joint far-forward meeting with the IP6 focus.

€CC€ Code of Conduct (CoC)

- Draft CoC produced by DEI committee and is under discussion.
- Guiding principle:

Individuals on ECCE should conduct themselves in a way that allows others to do their work

- Discussing mechanisms to handle violations and/or complaints.
- Will continue working on DIE @ ECCE-collaboration which will help integrate DIE into our bylaws and culture as we will transition to a full collaboration in ~mid '22.

Excellent Progress Towards Making ECCE the Project Detector!

ECCE is a low-risk, Inexpensive, flexible and optimized EIC detector!

- Low risk due to re-use of existing magnet and various detectors.
- Inexpensive due to magnet and detector reuse (we hope)
- Flexible and optimized by studying both IRs
- Most realistic detector to be ready by CD4a.