

BI-WEEKLY MEETING 30 August 2021

Or Hen, <u>Tanja Horn</u>, John Lajoie

Credit to the entire ECCE Team, EIC Project, and all collaborators

12th ECCE Bi-Weekly Meeting

Monday 30 Aug 2021, 16:00 → 21:20 US/Eastern

Description Connection Information:

Please click this URL to start or join. https://iastate.zoom.us/j/93573804511?pwd=V0RGRTUvaStNNDcvc3FiYWJqZS9rdz09 Or, go to https://iastate.zoom.us/join and enter meeting ID: 935 7380 4511 and password: 668209

16:00 → 16:30 **ECCE News and Status Speaker**: Tanja Horn (Cath)

16:30 → 17:00 Diversity, Equity and Inclusion

16:30 DE&I Report

Speakers: Christine Nattrass (University of Tennessee, Knoxville), Elena Long (University of New Hampshire), Marie BOER, simonetta liuti (universoty of virginia)

17:00 → 17:30 **Computing Team**

17:00 Computing Team Report

Speakers: Cristiano Fanelli (MIT), David Lawrence (Jefferson Lab)

17:30 → 18:00 Physics Benchmark Team

17:30 Physics Benchmark Team Report

Speakers: Carlos Munoz Camacho (IJCLab-Orsay (France)), Rosi Reed (Lehigh University)

17:45 Discussion

18:00 → 18:30 **Detector Team**

18:00 Detector Team Report

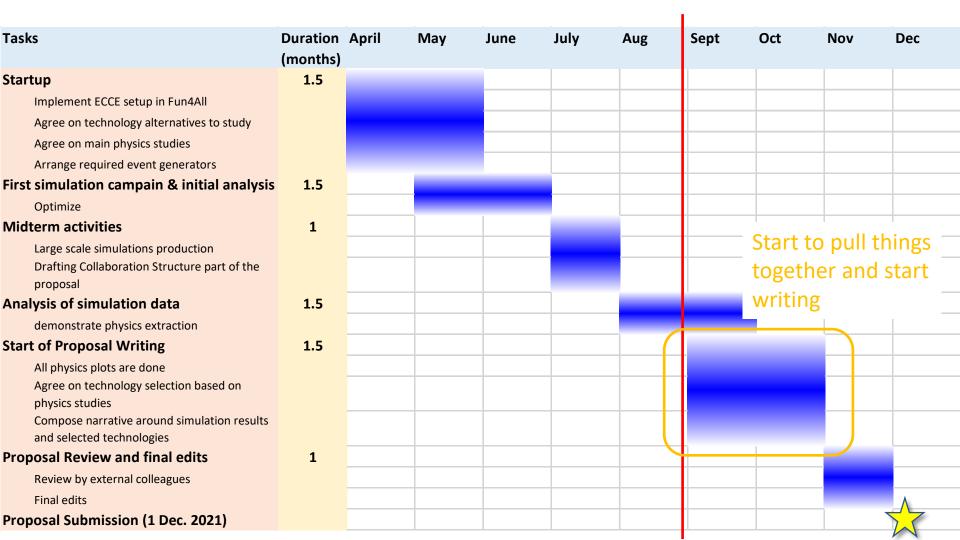
Speakers: Douglas Higinbotham (Jefferson Lab), Kenneth Read (Oak Ridge National Laboratory)

18:15 Discussion

18:30 → 19:00 Editorial Team

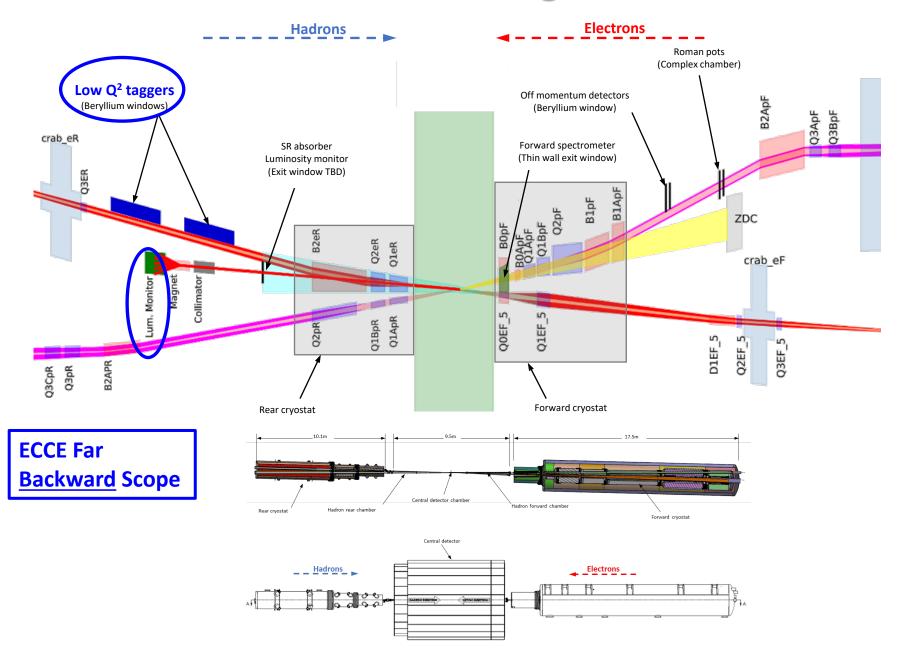
Editorial Team Report
Speakers: Peter Steinberg (BNL), Richard Milner (MIT), Tom Cormier (ORNL)

☐ Introduction and overview


☐ The Teams will present their updates

 ■ Next steps: important discussion about the timeline and path forward towards the proposal

ECCE Timeline


Today, 30 August

Refine ECCE detector technology selection

Extended ECCE detector integrated in IR

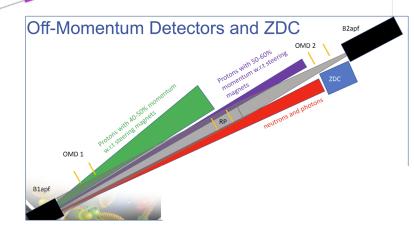
Extended ECCE detector integrated in IR

Concept is common with other detector proposals – technology choices may differ

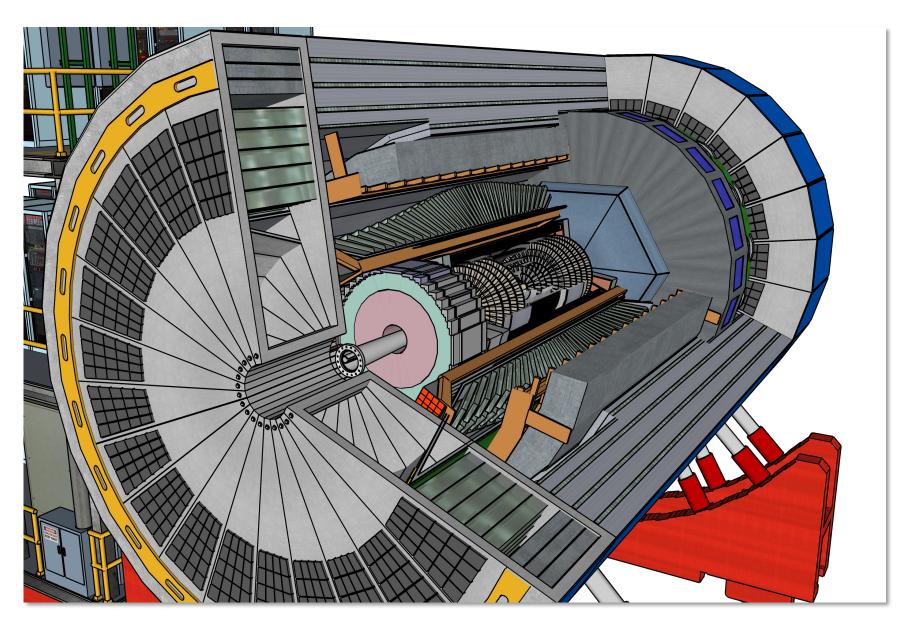
Process	Theta range (at top energy)	xL range	Detector (in IP6)
e+p DVCS	$0 < \theta < 5 \text{ mrad}$	0.9 – 1.0	Roman Pots
e+d diffractive (spectator proton)	$0 < \theta < 5$ mrad (mostly up to 2 mrad)	0.45-0.55	Roman Pots; OMD
e+d diffractive (struck proton)	$0 < \theta < 10$ mrad (up to 15 for the tails)	0.2 – 0.6 (sometimes higher)	OMD; B0 det.
e+He3 (spectator protons)	$0 < \theta < 10 \text{ mrad}$	0.6 - 0.7	Roman Pots
e+Au	$0 < \theta < 10 \text{ mrad}$	0.35 - 0.55	All three

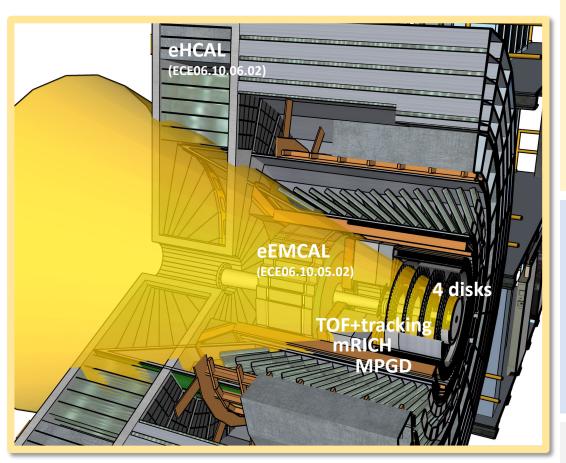
From A. Jentsch at EIC PM+Proposal meetings (spring 2021)

ECCE Far Forward Scope


Roman Pots: DVOS protons, protons from He3 breakup, coherent light nuclei.

ZDC: Neutrons and photons from incoherent nuclear reactions.


Off-Momentum Detectors:


Protons and pions from nuclear breakup and 4 decay.

<u>B0 Detector:</u> Charged particles with $\theta > 5.5$ mrad (silicon tracking); photons with $\theta > 5.5$ mrad (pre-shower/compact calorimetry).

Changes since initial ECCE concept:

- hpDIRC readout in backward region
- Extend projective barrel EMCal
- Move backward EMCal more inward, reduce number of Si disks from 5 to 4

ELECTRON ENDCAP

Tracking: MPGD (large area μRWell)

Electron Detection:

reference: PbWO4 crystals (reuse some)

VE: replace outer rings with SciGlass (backup PbGI)

h-PID: mRICH & TOF

HCAL: Fe/Sc (STAR re-use)

CENTRAL BARREI

Fracking: MAPS Si for vertexing and endcaps

(design to be optimized)

Electron PID: SciGlass (alt: PbGl or W(Pb)/Sc

shashlik)

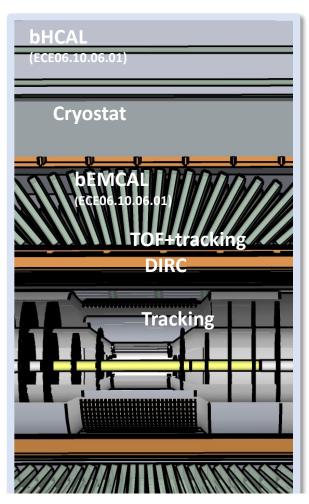
(plus instrumented frame)

n-PID: hpDIRC & TOF

HCAL: Fe/Sc (sPHENIX re-use)

HADRON ENDCAP

Tracking: MPGD (large area uRWELL)


PID: dual-RICH & TOF

Calorimetry

 reference: standard W/ScFi shashlik (PHENIX re-use) for EMCal and long.

sep. HCAI

Alternative: dual readout

<u>Changes since initial ECCE concept:</u>

- Tracking layers defined (2-3 Si vertex, 2 Si sagitta layer, GEM µRwell outer)
- ~5 cm for TOF (or upgrade option for AC-LGAD or LYSO/TOF) between hpDIRC and bEMCAL

ELECTRON ENDCAP

Tracking: MPGD (large area μRWell)

reference: PbWO4 crystals (reuse some)

 VE: replace outer rings with SciGlass (backup PbGl)

h-PID: mRICH & TOF HCAL: Fe/Sc (STAR re-use)

CENTRAL BARREL

Tracking: ITS3 based MAPS Si for vertexing, sagitta, and endcaps (optimization underway) **Electron PID:** SciGlass (alt: PbGl or W(Pb)/Sc

shashlik)

(plus instrumented frame)

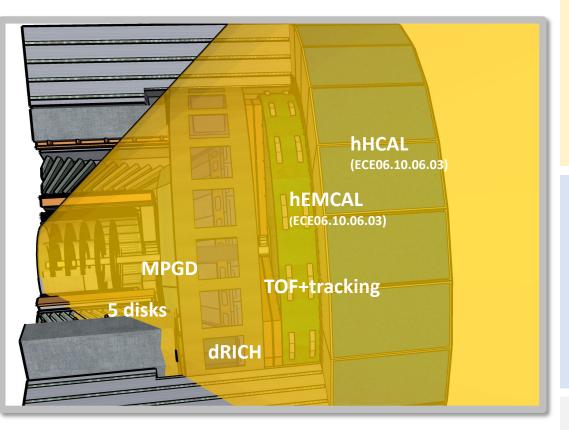
h-PID: hpDIRC & TOF

HCAL: Fe/Sc (sPHENIX re-use)

HADRON ENDCAP

Tracking: MPGD (large area µRWELL)

PID: dual-RICH & TOF


Calorimetry

 reference: standard W/ScFi shashlik (PHENIX re-use) for EMCal and long.

sep. HCAL

Alternative: dual readout

<u>Changes since initial ECCE concept:</u>

- MPGD to aid tracking
- dRICH shape changed
- TOF: mRPC
- Longitudinal-segmented hHCAL

ELECTRON ENDCAP

Tracking: MPGD (large area μRWell)

Electron Detection:

reference: PbWO4 crystals (reuse some)

VE: replace outer rings with SciGlass (backup PhGI)

h-PID: mRICH & TOF

HCAL: Fe/Sc (STAR re-use)

CENTRAL BARREL

Tracking: MAPS Si for vertexing and endcaps

(design to be optimized)

Electron PID: SciGlass (alt: PbGl or W(Pb)/Sc

shashlik)

plus instrumented frame)

h-PID: hpDIRC & TOF

HCAL: Fe/Sc (sPHENIX re-use)

HADRON ENDCAP

Tracking: MPGD (large area μRWELL)

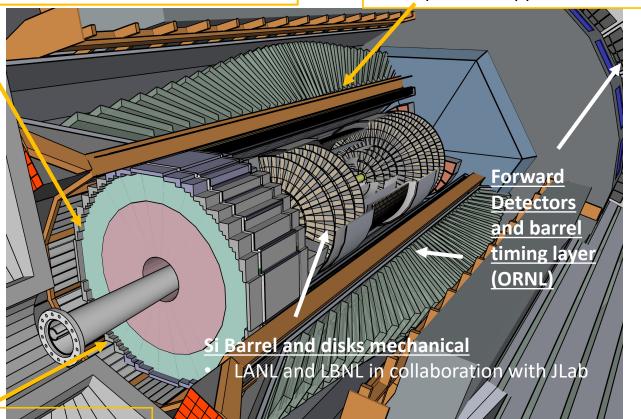
PID: dual-RICH & TOF

Calorimetry:

- reference: standard W/ScFi shashlik (PHENIX re-use) for EMCal and long.
 - sep. HCAL
- Upgrade path: dual readout

ECCE Last Remaining Issues to be Decided This Week

- ☐ 2-3 Si Vertex Layers
- ☐ Choice of TOF


Design/Engineering Activities and Integration

Electron Endcap EMCal

- Initial concept (Josh Crafts, CUA)
- Frame and cooling system (IJCLab-Orsay)

Barrel EMCal Support

- Various options EMCal (Josh Crafts, CUA)
- Impact on support structure and frame (MIT)

Evaluate available space and detector placement and supports

Next: integrate MPGD between Si and DIRC (work starting)

DIRC

- Re-use concept (CUA, GSI)
- Support structure (GSI)

EIC Project:

- Support for barrel EMCal and a universal frame that holds the DIRC and detectors "within" (backward EMCAl, mRICH, etc.)
- support of forward Hadron Calorimeter, and how to split it fo¹ maintenance mode, looking at similar for the backward HCal side.

ECCE Proposal – path forward

Contents

2	1 EIC	science with the ECCE detector (40 pages)
3 4	1.1	Key physics drivers (3 pages) and connection to EIC WP/YR and NAS report (3 pages)
5	1.2	Detector design (21 pages)
6	1.3	Physics performance of ECCE detector (15 pages) 6
7	1.4	Computing plan (1 page)
8	2 The	ECCE Collaboration (20 pages)
9	2.1	Collaboration structure, member institutions, and their experience (3 pages) 10
10	2.2	Collaboration Conduct, Diversity, Equity and Inclusion (1 pages)
11	2.3	Responsibilities of each institution (2 pages)
12	2.4	Construction schedule (6 pages)
13	2.5	Potential funding sources (2 pages)
14	2.6	Cost and risk (6 pages)
15	2.7	Upgrade paths (wouldn't this make more sense in I.B.?)
16	3 Inte	rnal Notes and Supporting Material
17	3.1	Detector
18	3.2	Physics
19	3.3	DAQ & online computing
20	3.4	Offline computing model
21	List of	Tables
22	List of	Figures
23	Refere	nces

Starting point: collect information on key topics - AND think about ways to convey the information in a clear and concise way (and not a lot of text)

Example 1: ECCE Detector Requirements (DRAFT) (CC

Topic	Issue	ECCE solution	Comment
Barrel PID – e/π separation: up to 10^{-2} - 10^{-4} down to 0.2 GeV	Need good EMcal resolution; need additional e/π below 2GeV	Use SciGlass with 55 cm space as option with good precision; use hpDIRC as π veto down to p = 0.3 GeV/c	Below 0.3 GeV/c can also augment with TOF. Leave 5-10cm for MRPC.
Barrel PID – π/K/p separation down to 0.2 GeV	hpDIRC covers down to 0.6 GeV, need to augment PID below this	Cover 0.2 < p < 0.6 GeV/c with TOF option	Leave 5-10 cm space for this (in region up to forward/backward TOF). Can be MRPC but allows upgrade options (AC-LGAD or LYSO-based TOF)
Hermetic coverage of edetection	Leave no gaps in e- detection while also folding in PID/hpDIRC need.	hpDIRC readout in backwards region; Moved backward EMCal 15 cm inwards; extended barrel EMCal	Good coverage for negative rapidity needs; performance needs to be verified with simulations.
Backward e- determination, e/π separation up to 10^{-4}	Need highest precision EM calorimetry	Assume all PbWO ₄	Partial coverage with SciGlass can be scope contingency
Momentum resolution in barrel	Assume 1.5 T field	•	Need to work out how to stage such that early beam commissioning starts without Si.
Momentum resolution in forward/backward regions at high η	Assume 1.5 T field	Five disks forward, four disks backward to move EMCal in. Additional MPGD tracking behind dRICH and mRICH	Upgrade options: TRD for PID; AC-LGAD for tracking
Forward Hadronic calorimetry	Forward hadronic calorimetry resolution < 50%/V(E)	Longitudinally separated calorimeter to meet needs in high- η region	Upgrade Option: Dual calorimeter (or can fold in earlier in region of highest need)
Forward Particle Identification	Constrained space in forward region	dRICH based on C4F10; make use of recirculation and gas recovery systems	Recirculation and gas recovery systems for environmentally unfriendly gas use

Example 2: ECCE Detector Scope DRAFT

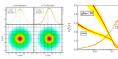
List of Assumptions

- 1) The accelerator/cryogenics scope will provide a cryogenic distribution can in the experimental Hall at IP6. The remaining scope in the Hall is included in the detector magnet.
- 2) The IR and vacuum (IR magnets, beam pipes, pumps, valves, windows, etc.) are part of the accelerator/IR scope.
- 3) The luminosity detector is included in this detector proposal and includes anything that comes behind the conversion/exit window. Up to that window is assumed to be accelerator scope.
- 4) The polarimetry scope is not included in this detector proposal as it is handled external to the proposals through the across proto-collaborations polarimetry working group.*
- 5) Any required IP-6 de-installation costs are assumed to be covered as regular laboratory operations costs.
- 6)

^{*}Note that for the CD-1 EIC Project cost estimates the polarimetry and luminosity detector scope was still covered under accelerator/IR scope.

Example 3: ECCE Detector R&D Needs DRAFT

Plus a GANTT chart visualization with milestones

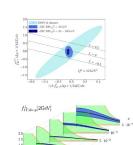

Topic	What R&D is needed to realize the ECCE Detector	What are the milestones to validate R&D for the ECCE Detector
mRICH (eRD101)		
dRICH (eRD102)		
hpDIRC (eRD103)		
Si Service (eRD104)		
SciGlass (eRD105)	Prove that SciGlass is a viable cost- effective solution	Beam test with small prototype (2021) Scale-up from 20 cm to 45 cm (2021/22) Test different geometries (2022)
Forward Calorimeter (eRD106/eRD107)		
MPGD (eRD108)	Prove that µRwell with capacitive readout works	
ASICS (eRD109)		
Si-Vertex (eRD111)		
AC-LGAD (eRD112)		

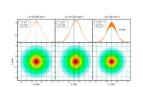
Example 4: Key Physics Drivers and Connection to EIC WP/YR and NAS Study DRAFT

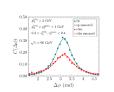
"Experiments must address the FIC White Paper and NAS Report science case"

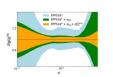
NAS Report Topics	NAS Report Sub-topics	ECCE	Yellow Report	
		Measurements	enhancement	
Origin of Mass	Tomographic Imaging Quarks and Gluons	or indepting of control profits and a profit of the control profit		
	Heavy-quarkonia exclusive production at		π/K structure	
	threshold (check NAS report)		0.5 (3.6 (3.6 (3.6 (3.6 (3.6 (3.6 (3.6 (3.6	
	(mention) 3D Imaging in Momentum Space		00 01 01 04 06 08 x	
Origin of Spin	Gluon spin and orbital motion	13		
	Transverse motion in polarized nucleons	20 5 W 4		
Dense Systems of Gluons	Propagation of energetic quarks through matter	Applied 973 10 ⁴	D/D* reconstruction and heavy-flavor in jets.	
		### (99518* ### (95518*) ### (95518* ### (95518* ### (95518* ### (95518* ### (95518* ### (95518* ### (95518* ### (95518* ###)))) ******************	leading proton	
	Properties of Nuclei in QCD	T 32-1 CaV (-9) canced (-1) cav (-1) ca	Light-i	
	Diffraction	Dense gli oli oli oli oli oli oli oli oli oli o		

Science to check performance in IP8: p/K Structure, Light-Ion tagging

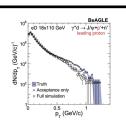


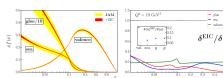



Physics Studies Focus: a first look


Plots to demonstrate EIC NAS Study, White Paper

- Origin of Nucleon
 Spin
- Confined motion of partons
- 3D imaging quarks and gluons
- Nucleon mass
- High gluon densities in nuclei
- Quarks and gluons in the nucleus





Plots to show unique ECCE strengths

- Diffractive jets?
- nuclear modifications and in-medium evolution
 - D/D* reconstruction and heavyflavor in jets.
 - showcasing ECCE lower pT-cutoff due to the 1.5T field

ECCE Detector Costing

(note that this a simplified version; labor is included)

	EIC Ref	EIC Ref In-	EIC Ref Total	ECCE	ECCE In-Kind	ECCE Total
WBS	Project \$M			Project \$M		\$M
Detector management			7.4			
Detector R&D			12.1			
Tracking			31.1			
PID			26.5			
EM Calorimetry Backward Barrel Forward			36.2	5.0	4.0	9.0
Hadronic Calorimetry			33.1			
Magnet			29.7	3.0	6.0	9.0
Electronics			17.1			
DAQ Computing			8.7			
Detector Infrastructure			26.4			
IR Integration &						
Auxiliary Detectors			8.1			
Detector Pre-Ops &						
Commissioning			8.7			
TOTAL	153.1	L 92.0	245.1			

Collection of cost estimates ongoing with teams and ORNL

In-Kind Contributions – Example EEEMCAL

Electron Endcap Electromagnetic Calorimeter – the consortium plans to pursue:

- o the reuse of existing PbWO₄ and lead glass (~\$0.5) and pursue purchase 200-250 crystals through Charles U./Prague (\$0.4-\$0.5Million)
- o further develop glass radiator, to be provided at reduced cost.
- Labor (design, Q&A, assembly, etc.) contributed through continuing university grants
 (~\$2Million)
- The Science Committee of Armenia (Research and instrumentation) could contribute and AANL could contribute labor, pending further discussions
- o IN2P3/France (~<\$1Million) could contribute, pending further discussions.
- In addition, the Consortium plans to pursue several external funding sources for procurement of additional crystals

WBS	ECCE Project \$M	ECCE In-Kind \$M	ECCE Total \$M
ECE06.10.05.02	5.0	4.0	9.0

In-Kind Contributions – International Interest

CENTRAL DETECTOR

Ongoing discussions about intent to pursue funding and collection of information

Tracking:

• Silicon: Japan, Czech Republic; LANL LDRD

Calorimetry

PWO and SciGlass: Czech Republic, Armenia, France

Forward Calorimeter: Japan, South Korea

Particle ID

DIRC: GSI/Germany contribution

mRPC/crystals: China

FAR FORWARD - FAR BACKWARD

Roman pots: France

Off momentum: Israel

ZDC: Japan

Luminosity monitors: Israel

Low Q2 tagger: UK

ECCE Detector – Risk Items DRAFT

Start of a list:

CENTRAL

Magnet

Reuse presents moderate risk (according to <u>2020 Jlab Engineering Risk Assessment</u>, engineer: R. Fair); ECCE strategy: minimal changes, check functionality during sPHENIX, carry through E&D as schedule risk mitigation (– see Doug/Ken talk)

Tracking

- MAPS ITS3 risk similar as Si Consortium
- GEM µRwell with capacitive couplig ongoing JLab/CLAS12 and EIC R&D

Calorimetry

- SciGlass validation of large-scale glass, part of ongoing project R&D
- Forward Dual Readout Calorimeter technical risk;

Particle ID

- hpDIRC
- mRICH
- dRICH no expertise in collaboration → increasing expertise in ECCE

FAR FORWARD – FAR BACKWARD

- AC-LGAD technical risk, part of project R&D
- No further obvious risks in FF/FB detectors

Risk and In-Kind – Example Magnet

Assume re-use of Babar magnet

- Risk: Babar solenoid develops operational issues
- Mitigation: Monitor sPHENIX high field test in June 2022 and first run (starts February 2023) to make decision if refurbishment or a replacement solenoid is needed
- Mitigation: Carry through Engineering&Design Labor for replacement magnet as schedule risk mitigation (\$1Million)
- Need replacement valve box, cryoflex line, and possibly a trim coil (\$1-2Million)
- In-Kind: existing 1.5T magnet estimated at \$9Million minus the cost to use it for EIC operations (\$6Million)

WBS	ECCE Project \$M	ECCE In-Kind \$M	ECCE Total \$M
ECE06.10.05.02	3.	6.0	9.0

ECCE Consortium

1.	AANL/Armenia	22.	HUJI/Israel	43.	Ohio U	64.	UNH
2.	AUGIE	23.	IJCLab-Orsay/France	44.	ORNL	65.	U. Regina/Canada
3.	BGU/Israel	24.	IMP/China	45.	PNNL	66.	USTC/China
4.	BNL	25.	Iowa State	46.	Pusan Natl. Univ./Kor.	67.	UT Austin
5.	Brunel University/UK	26.	IPAS/Taiwan	47.	Rice	68.	UTK
6.	Canisius College	27.	JLab	48.	RIKEN/Japan	69.	UTSM/Chile
7.	CCNU/China	28.	Kyungpook Natl. U./K.	49.	Rutgers	70.	UVA
8.	Charles U./Prague	29.	LANL	50.	Saha/India	71.	Vanderbilt
9.	CIAE/China	30.	LBNL/Berkeley	51.	SBU	72.	Virginia Tech
10.	CNU	31.	Lehigh University	52.	SCNU/China	73.	Virginia Union
11.	Columbia	32.	LLNL	53.	Sejong U./Korea	74.	Wayne State
12.	CUA	33.	Morehead State	54.	TAU/Israel	75 .	WI/Israel
13.	Czech. Tech. Univ./CZ	34.	MIT	55.	Tsinghua U./China	76.	WM
14.	Duquesne U.	35.	MSU	56.	Tsukuba U./Japan	77.	Yonsei Univ./Korea
15.	Duke	36.	NCKU/Taiwan	57.	CU Boulder	78.	York/UK
16.	FIU	37.	NCU/Taiwan	58.	UCAD/Senegal	79.	Zagreb U./Croatia
17.	Georgia State	38.	NMSU	59.	UConn		
18.	Glasgow/Scotland	39.	NRNU MEPhI/Russia	60.	UH		
19.	GSI/Germany	40.	NTHU/Taiwan	61.	UIUC		
20.	GWU	41.	NTU/Taiwan	62.	UKY		
21.	Hampton	42.	ODU	63.	U. Ljubljana/Slovenia		

ECCE Consortium Structure

EIC Project POC Rolf Ent (JLab)

Computing Team

Cristiano Fanelli (MIT) David Lawrence (JLab)

Computing Working Groups:

- Artificial Intelligence
 William Phelps (CNU/JLab)
- Computing and Software Joe Osborn (ORNL)

Detector Team

Doug Higinbotham (JLab) Ken Read (ORNL)

Detector Working Groups:

- IP8/Equipment Re-use John Haggerty (BNL)
- Far Forward/Far Backward*
 Michael Murray (KU),
 Yuji Goto (RIKEN), Igor Korover (MIT)
- Tracking
 Xuan Li (LANL),
 Nilanga Liyanage (UVA)
- Calorimetry
 Friederike Bock (ORNL), Yongsun Kim (Sejong U.)
 - *Alex Jentsch, Yulia Furletova (far-forward/backward POC)

- Particle ID Greg Kalicy (CUA), Xiaochun He (GSU) Magnetic Field
- Magnetic Field
 Paul Brindza (JLab),
 Renuka Rajput-Ghoshal (JLab)
 DAQ/Electronics/Readout
- Chris Cuevas (JLab),
 Martin Purschke (BNL)

ECCE Steering Committee

Or Hen (MIT) Tanja Horn (CUA) John Lajoie (ISU)

Physics Benchmarks Team

Carlos Munoz-Camacho (IJCLab-Orsay) Rosi Reed (Lehigh U.)

Physics Working Groups:

- Simulations
 Cameron Dean (LANL), Jin Huang (BNL)
- Inclusive Processes
 Tyler Kutz (MIT), Claire Gwenlan (Oxford)
- Semi-Inclusive
 Ralf Seidl (RIKEN), Charlotte Van Hulse (Orsay)
- Exclusive
 Rachel Montgomery (Glasgow), Julie Roche (OU)
- Diffractive and Tagging
 Wenliang Li (W&M), Axel Schmidt (GWU)
- Jets and Heavy Flavor
- Cheuk-Ping Wong (LANL), Wangmei Zha (USTC)
- BSM and Precision Electroweak Sonny Mantry (UNG), Xiaochao Zheng (UVa)

Institutional Board

Diversity, Equity and Inclusion

Narbe Kalantarians (VUU, co-chair) Christine Nattrass (UTK, co-chair) Simonetta Liuti (UVA) Elena Long (UNH)

Editorial Team

Tom Cormier (ORNL) Richard Milner (MIT) Peter Steinberg (BNL)

Editorial Working Groups:

- Proposal Editing, Verification and Version Control
- Costing and Management

Website:

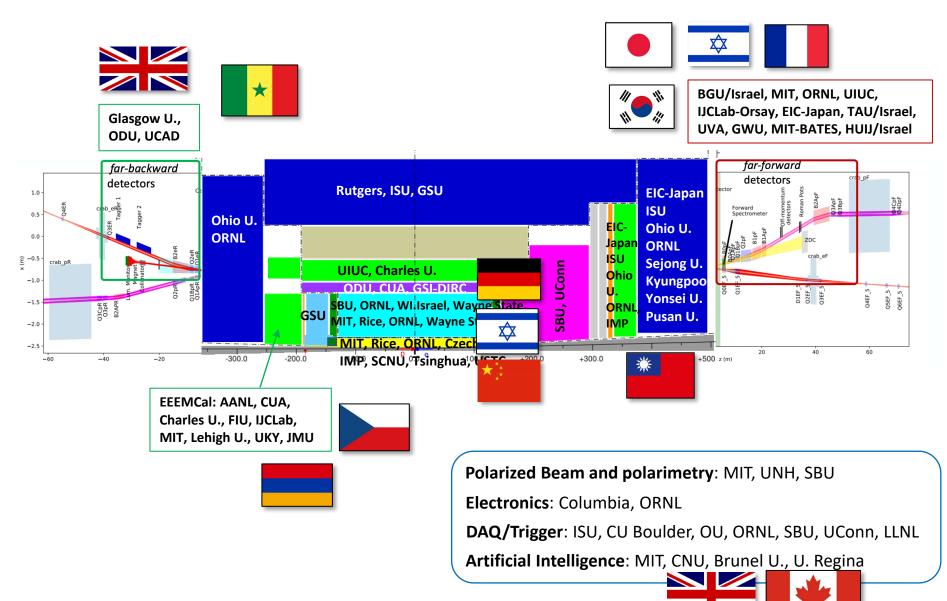
https://www.ecce-eic.org/

Indico:

https://indico.bnl.gov/category/339/

Wiki:

https://wiki.bnl.gov/eicug/index.php/ECCE


Mailing Lists:

https://lists.bnl.gov

- ecce-eic-public-l
- ecce-eic-ib-l
- ecce-eic-dei-l
- ecce-eic-det-l
- ecce-eic-phys-l
- ecce-eic-prop-l

ECCE Consortium and Technology Interest

Announcements

Godparents

- Origin of Mass: Jianwei Qiu (reader)
- o Spin: Ralf Seidl
- Tomography: Carlos Munoz Camacho
- O Dense Gluons: TBA
- o EW & BSM: Xiaochao Zheng and Christoph Paus

Upcoming Events

- AI4EIC-exp Workshop (7 10 Sept)
- \circ Sardinian Workshop on Spin Studies and related Issues (6 8 Sept)
- DNP and ECCE meeting (11 14 Oct)
- Artificial Intelligence for Nuclear Technology and Applications (25 29 Oct)

IB Vote on the Code of Conduct

An email will be sent out after this meeting. Vote closes on Tuesday Sept 7th at noon. If you haven't received your voting email by EOD 8/31 please contact us. Requires majority of IB votes cast to pass.