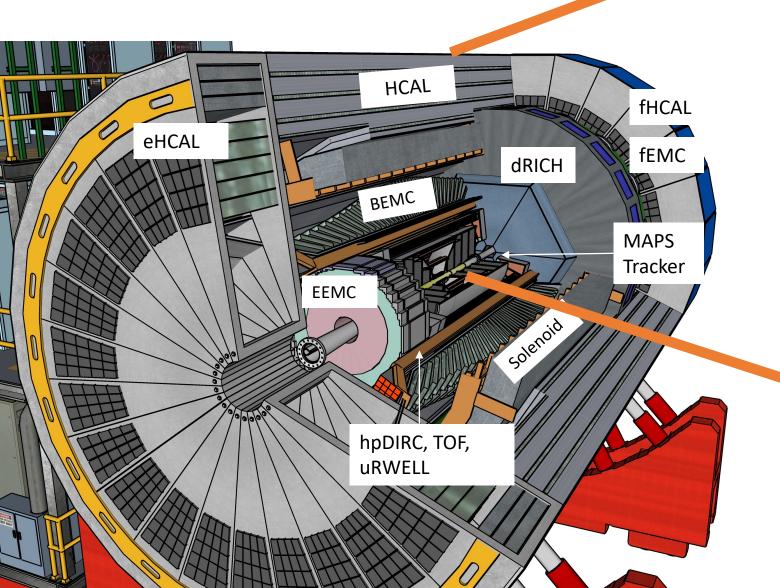
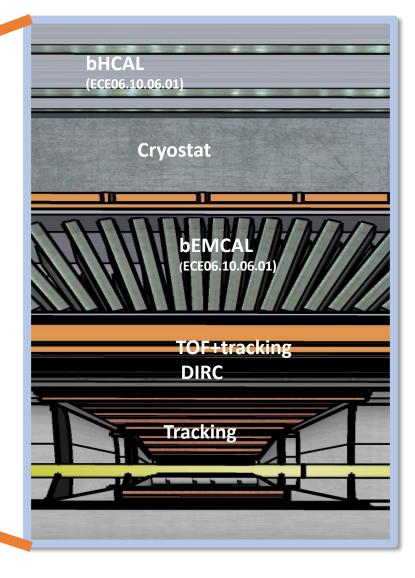


14th Bi-Weekly Meeting

Or Hen, Tanja Horn, John Lajoie


Outline


- Detector & simulations
- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

Outline

- Detector & simulations
- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

€ CC∈ Detector Status

Last open items

Finalizing TOF system (30 – 50ps)

• Barrel:

AC-LGADs too expensive.

LYSO (CMS solution) work. ~x3 less expensive than AC-LGADs, but not cheap mRPC most attractive solution. Mechanics (space) being worked out.

• e-endcap:

mRPC most attractive solution. Good resolution needed for t₀.

h-endcap

For 'pure' PID requirements mRPC / scintillators are enough.

AC-LGAD motivated by Jets physics where combined excellent position and time resolution can help with particle flow.

Last open items

Finalizing TOF system (30 – 50ps)

• Barrel:

ORNL organizing 2 day TOF 'mini-summit' in mid October (week after DNP) to finalize this.

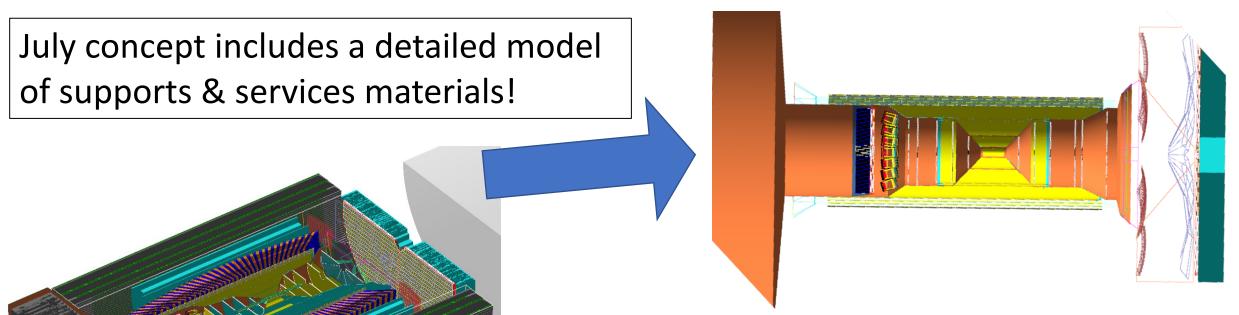
Remote participation will be accommodated.

and time resolution can help with particle flow.

Second Simulation Campaign

- Has started!
 - https://lists.bnl.gov/pipermail/ecce-eic-public-l/2021-September/000220.html
- Currently running single-particle checks and debugging
- Anticipate full production to start in ~ 1 week
- ECCE 4th Simulation Workshop:
 - https://indico.bnl.gov/event/13060/
 - Will concentrate on details of making use of second campaign output

Second Simu

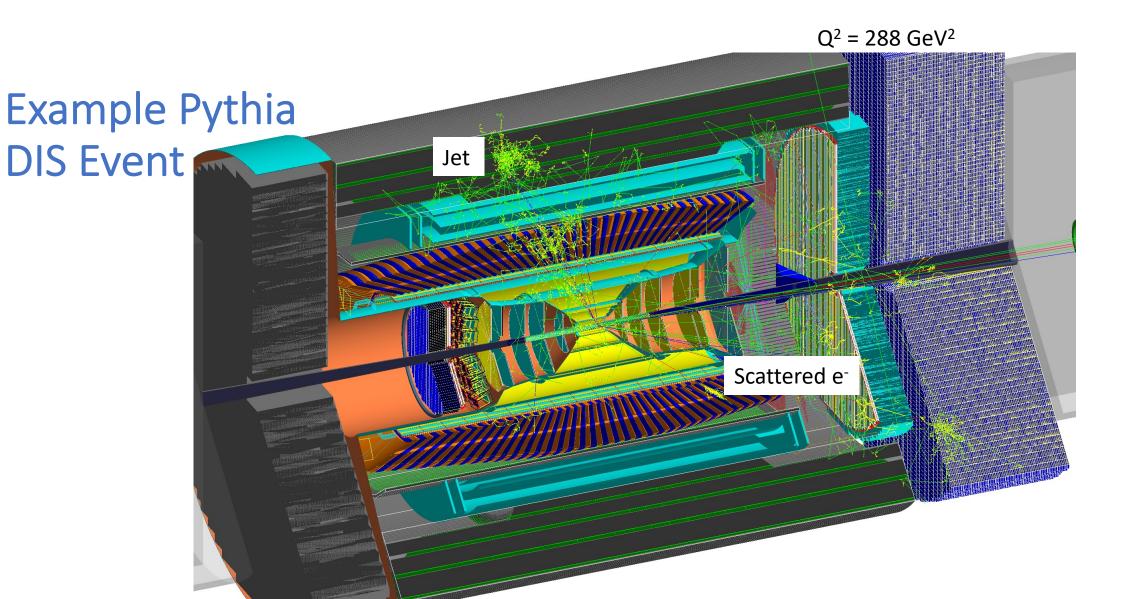

Got delayed by technical issues in the implementation of the latest detectors & support structures.

Took some time to solve but seem to be running well now!

Will concentrate on details of making use of second campaign output

9/13/2021

€ C C ∈ Simulations: 2nd campaign running!

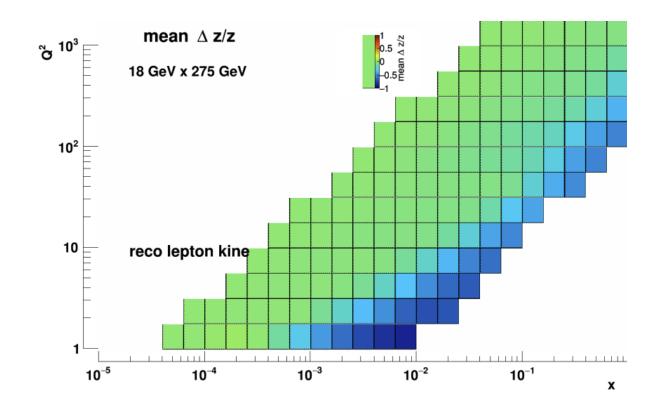

ECCE Supports I	Materials Listing
------------------------	-------------------

Name	z1	z2	r1	r2	Cu X₀	Al X ₀	H₂O X₀	Plastic X ₀	Carbon X ₀	Fe X₀
ETrackingCylinderService_1	-400	-310	270	N/A	9	0	0.42	0.32	0.333	0
ETrackingConeService_1	-310	-295	270	65	9	0	0.42	0.32	0.333	0
ETrackingCylinderService_2	-295	-200	65	N/A	17	0	0.56	0.64	0.333	0
ETrackingCylinderService_3	-200	-150	65	N/A	15	0	0.56	0.56	0.333	0
ETrackingConeService_2	-150	-125	65	48	13	0	0.56	0.48	0.333	0
ETrackingCylinderService_4	-125	-107.1	48	N/A	11	0	0.56	0.40	0.333	0
ETrackingCylinderService_5	-107.1	-80	48	N/A	9	0	0.42	0.32	0.333	0
ETrackingCylinderService_6	-80	-57	48	N/A	7.5	0	0.28	0.24	0.333	0
						***				***

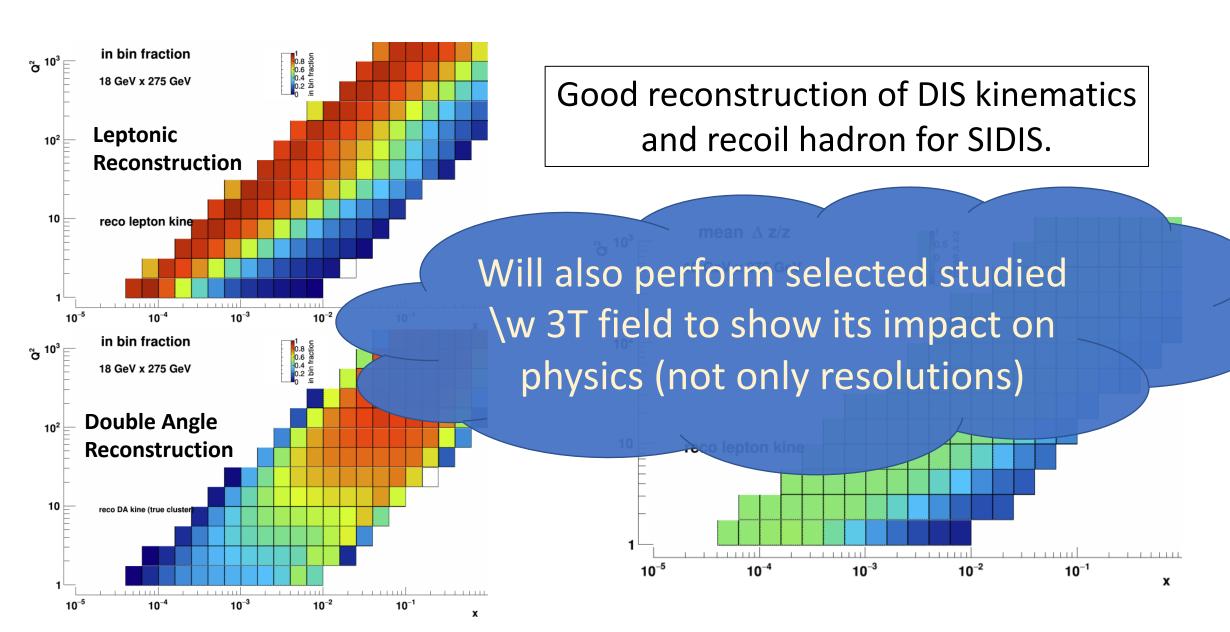
€ C C ∈ Simulations: 2nd campaign running!


Now include forward / backward beamlines, \w detector instrumentation & particle transport through magnets

€ C C ∈ Simulations: 2nd campaign running!



Good DIS Kinematic Reconstruction



Good reconstruction of DIS kinematics and recoil hadron for SIDIS.

Good DIS Kinematic Reconstruction

Outline

Detector & simulations

- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

€ C ← Proposal: Physics Godparents

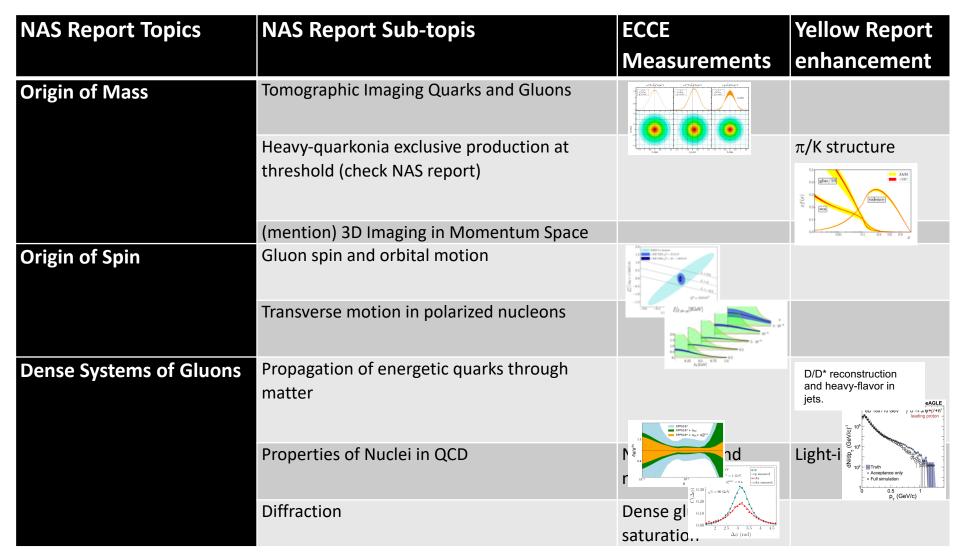
Spin

Gluons

Tomography

EW&BSM

Successful kickoff meeting


- Discussion of godparents role
- Initial physics discussion \w emphasis on studies we might be missing

Input in the coming week: expected plots to go into proposal and main points that go with them.

Physics Drivers and **EIC Science**

Working with PWG convenors: need a detailed list and description of physics performance plots to be produced.

Evolve how the NAS report topics are addressed by ECCE in conjunction with the godparents.

Physics Drivers and EIC Science

Reconstructed track+cluster jet g perp vs. z

Proton double-spin asymmetry ALL vs. xB

Proton double-spin asymmetry ALT vs. xB

Jet ReA vs jet pT

Helium-3 double-spin asymmetry ALL vs. xB

Constraints on polarized PDFs vs. xB: IMPACT

Distribution of jet charge for u-quark and d-quark jets

A1p, A1He3, A1n vs. xB (A1n extracted from A1p, A1He3): IMPACT

Nuclear modification factor (ReA) of J/psi vs momentum fraction (z)

Dihad

DVC

Plot

A_UT Sivers sin(\phi_h - \phi_S) or Collins sin(phi_h + phi_S) asymmetry moments for pi+ and pi- vs z

Up and down quark Sivers functions as a function of k T in several bins of x (YR Fig 7.53)

A LL double helicity asymmetries for pi+/- and K+/-\$ as a function of x in bins of Q2 and z

Expected impact of the EIC on the anti-up, anti-down and strange quark helicities (YR Fig 7.19)

Projected uncertainties for the nuclear modification factor (ReA) of open heavy flavor vs momentum fraction (z)

Jet eta vs. jet z for primary particle jet, reconstructed track jet and reconstructed track+cluster jet

	NAS topics:	
1) Tomographic In	naging of Quarks and Gluons	MASS
2) Heavy-quarkon	nia exclusive production at threshold	MASS
3) 3D imaging in M	MASS	
4) Gluon spin and	orbital motion	SPIN
5) Transverse mo	tion in polarized nucleons	SPIN
6) Propagation of	energetic quarks through matter	DENSE GLUONS
7) Properties of N	uclei in QCD	DENSE GLUONS
8) Diffraction		DENSE GLUONS
		NAS topic
		1

NAS topics:	
of Quarks and Gluons	MASS
sive production at threshold	MASS
um Space	MASS
motion	SPIN
olarized nucleons	SPIN
ic quarks through matter	DENSE GLUONS
QCD	DENSE GLUONS
	DENSE GLUONS
	NAS topic
	1
	1

		1	7	Gary	F
		1		Igor	I
		1		Nathan Grau	
		NAS topic	Additional NAS topic	Person in charge	
iffraction		DENSE GLUONS			
roperties of Nu	ıclei in QCD	DENSE GLUONS			
D imaging in Momentum Space Iluon spin and orbital motion ransverse motion in polarized nucleons ropagation of energetic quarks through matter roperties of Nuclei in QCD iffraction		DENSE GLUONS			
ansverse moti	on in polarized nucleons	SPIN			
luon spin and	orbital motion	SPIN			
D imaging in M	Iomentum Space	MASS			
eavy-quarkonia	a exclusive production at threshold	MASS			

3

3

3

3

3

4

4

4

4

4

4

4

6

6

6

5

5

7

7

7

7

7

Ralf

Ralf

John Lajoie

John Lajoie

John Lajoie

Jackson

Charlotte

Charlotte

Xuan Li

Raymond Ehlers

Jackson, Tyler, Claire

Jackson, Tyler, Claire

Needs assignment

Needs assignment

Xinbai Li and Wangmei Zha

Jets & HF

Exclusive

SIDIS

SIDIS

Jets & HF

Jets & HF

Jets & HF

Inclusive

Inclusive

Inclusive

Inclusive

Inclusive

Jets & HF

Jets & HF

Jets & HF

SIDIS

SIDIS

DVCS (He4) cross section vs t, Q2 and xB	1	7	Gary	Exclusive
Exclusive J/Psi cross section vs t, Q2 and xB	1	4	Nathaly, Stuart	Exclusive
Exclusive phi (eA) cross section (or asymmetries) vs t	1	8	Justin	Exclusive
TCS cross section (or asymmetries) vs t, Q2 and xB	1		Kayleigh	Exclusive
Pion form factor vs Q2	1		S. Kay, G. Huber	Diffractive & Tagging
Pion structure function vs x	1		R. Trotta	Diffractive & Tagging

adron azimuthal angle correlation: delta phi distribution	1
CS (ep) cross section vs t, Q2 and xB	1
CS (He4) cross section vs t, Q2 and xB	1
lusive J/Psi cross section vs t, Q2 and xB	1
lusive phi (eA) cross section (or asymmetries) vs t	1
S cross section (or asymmetries) vs t, Q2 and xB	1
n form factor vs Q2	1
n structure function vs x	1

Physics Drivers and **EIC Science**

Dectector acceptance and efficiency for DVCS (J/Psi) vs rapidity

Reconstructed Tau lepton decay length vs. truth decay length

Dectector acceptance and efficiency for DVCS (for TCS) vs rapidity

Dectector acceptance and efficiency for DVCS (for exclusive phi) vs rapidity

NAS topics:	
1) Tomographic Imaging of Quarks and Gluons	MASS
2) Heavy-quarkonia exclusive production at threshold	MASS
3) 3D imaging in Momentum Space	MASS
4) Gluon spin and orbital motion	SPIN
5) Transverse motion in polarized nucleons	SPIN
6) Propagation of energetic quarks through matter	DENSE GLUONS
7) Properties of Nuclei in QCD	DENSE GLUONS
8) Diffraction	DENSE GLUONS

Inclusive NC e+P cross section vs. xB, for bins of Q2		7	Tyler	Inclusive
Inclusive NC e+D cross section vs. xB, for bins of Q2		7	Tyler	Inclusive
Inclusive NC e+He3 cross section vs. xB, for bins of Q2		7	Tyler	Inclusive
Proton structure functions F2, FL, xF3 vs. xB		7	Sonny, Tyler, Claire	Inclusive
Deuterium structure functions F2, FL, xF3 vs. xB		7	Sonny, Tyler, Claire	Inclusive
Helium-3 structure functions F2, FL, xF3 vs. xB		7	Sonny, Tyler, Claire	Inclusive
Constraints on unpolarized PDFs vs. xB : IMPACT		7	Claire, Eimear	Inclusive
A1n through e-He3 vs x: 5x41 GeV/u		7	D. Nguyen, J. Pybus	Diffractive & Tagging
eA diffraction: d sigma/dt vs t		8	M. Baker. P. Steinberg	Diffractive & Tagging
Electroweak mixing angle vs. Q2 (ep and eD)		N/A	Xiaochao	Electroweak & BSM
An impact plot for tau searching (Receiver Operating Characteristic curve)		N/A	Jinlong Zhang	Electroweak & BSM
xB, Q2 resolution vs. x, Q2 for different reconstruction methods		Detector performance	Claire	Inclusive
Mean Delta z/z values in bins of x and Q2 for the scattered lepton kinematic red	construction method	Detector performance	Ralf, Charlotte	SIDIS
Jet energy scale and resolution vs jet energy		Detector performance	Tristan Protzman & Rosi Reed	Jets & HF
Dectector acceptance and efficiency for DVCS (ep) vs rapidity		Detector performance	Igor	Exclusive
Dectector acceptance and efficiency for DVCS (He4) vs rapidity		Detector performance	Gary	Exclusive

Detector performance

Detector performance

Detector performance

Vertex tracking detector performance

Nathaly, Stuart

Jinlong Zhang

Justin

Kayleigh

Exclusive

Exclusive

Exclusive

Electroweak & BSM

Outline

Detector & simulations

- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

ECCE Cost and Schedule Snapshot

ECCE Cost and Schedule Snapshot

WBS	EIC Ref Project \$M	EIC Ref In-Kind \$M	EIC Ref Total \$M	ECCE Project	\$M E	ECCE In-Kind \$M	ECCE Total \$M Notes
Detector management			7.4		7.4	0.0	7.4
Detector R&D			12.1		12.1	0.0	12.1 Backup: R&D plan document; for ECCE details see TH estimate from 9/8/2021 (email)
Tracking			31.1		22.9	4.3	27.2 Initial estimate MAPS SI: Check: any contribution from UK? Japan? China? Czech Republic? Disks: Check: in-kind LANL engineers?
PID			26.5		28.7	4.0	32.7 Assume \$10M for dRICH and \$2M for TOF \$4M Check: in-kind value of re-using bar boxes. ~\$300k/box, 12 boxes Check: in-kind GSI design/engineering/expertise?
EM Calorimetry			36.2		21.4	14.0	35.4 in-kind: \$1.0M Electron Endcap: re-use ~500 PWO crystals, Charles U./Czech Rep. buys 200-250 crystals in-kind: \$1.0M Electron Endcap: FTEs from EEEMCal Team (Engineering/Design IJCLab-Orsay/Armenia in-kind: \$2.0M Electron Endcap: EEEMCal team pursuing external funding, e.g., NSF MRI or MSRI \$0 Barrel EMCal: check in-kind \$0 Hadron Endcap EMCal: check in-kind EIC-Japan, Korea Assume \$10M Hadron Endcap EMCal: re-use of PHENIX EMCal, ALICE EMCal or PbGI?
Hadronic Calorimetry			33.1		9.1	24.0	33.1 Assume in-kind ~\$3.5M Electron Endcap HCAL: re-use STAR(Project: \$0.5M) in-kind: \$10.5M Barrel HCAL: re-use sPhenix HCAL (Project: \$0.3M) Assume in-kind: ~\$10M Hadron Endcap HCAL: check in-kind EIC-Japan, Korea
Magnet			29.7		3.0	6.0	9.0
Electronics			17.1		17.1	0.0	17.1
DAQ Computing			8.7		8.7	0.0	8.7
Detector Infrastructure			26.4		26.4	0.0	26.4 Check: possible in-kind cradle, platform etc.; for IP8 additional costs?
IR Integration & Auxiliary Detectors			8.1		1.5	6.6	8.1 Auxiliary detectors in-kind
Detector Pre-Ops & Commissioning			8.7		8.7	0.0	8.7
TOTAL	153.1	92.0	245.1	16	7.0	58.9	<mark>225.9</mark>

- DWG's working to finalize cost and schedule information with ORNL team
- Continuing to develop detailed plans for re-use items
- SC "drill-downs" with subsystems to begin this week

ECCE Cost an

WBS
Detector management
Detector R&D
Tracking

Working groups provided very detailed information on cost, risk, schedule.

SC, team leaders, and ORNL project team undergoing detailed drill-downs to verify and refine our current estimates.

- DVV
- Continuation
- SC "drill-down.

€ C ← Proposal: oHCAL Example

WBS ID	WBS Name	Activity Description (Separate between conceptual design, preliminar design, final design, long lead procurements etc.)	Activity Type (Pull Down)	Units	Unit Pricing	Basis of Estimate for costing (Pull Down)	Labor Hours	Resource Name (Pull Down)	Funding Source (Pull Down)	% of cost to Project	% of cost Inkind	Direct Materials Total \$\$ (Calculated)	Total Labor cost \$\$ (Calculated)
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Steel Sectors	Vendor Fabrication	32	195,512	Historical Costs		Other	repurpose	0	100	\$6,256,384	\$0
			Final Design			Historical Costs	1,250	Mechanical Engineer	repurpose	0	100	\$0	\$191,463
			Final Design			Historical Costs	1,000	Mechanical Designer	repurpose	0	100	\$0	\$116,100
			Procurement Support			Historical Costs	40	Mechanical Engineer	repurpose	0	100	\$0	\$6,127
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Splice Plates, Pucks and Pins	Vendor Fabrication	1	209,500	Historical Costs		Other	repurpose	0	100	\$209,500	\$0
		oHCAL Support Rings, Magnet Supports	Vendor Fabrication	1	270,000	Historical Costs		Other	repurpose	0	100	\$270,000	\$0
			Final Design			Historical Costs	950	Mechanical Engineer	repurpose	0	100	\$0	\$145,512
			Final Design			Historical Costs	700	Mechanical Designer		0	100	\$0	\$81,270
			Procurement Support			Historical Costs	40	Mechanical Engineer	repurpose	0	100	\$0	\$6,127
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Scintillating Tiles	Vendor Fabrication	1	1,709,915	Historical Costs		Other	repurpose	0	100	\$1,709,915	\$0
			Procurement of Material	1	77,292	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$77,292	\$505
			Procurement of Material	1	10,700	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$10,700	\$505
			Procurement of Material	48	155	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$7,440	\$505
			Procurement of Material	1	14,500	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$14,500	\$505
			Final Design			Historical Costs	160	Mechanical Designer	repurpose	0	100	\$0	\$18,576
			Procurement Support			Historical Costs	40	Mechanical Tech	repurpose	0	100	\$0	\$4,040
			Q&A / Testing			Historical Costs	160	Mechanical Tech	repurpose	0	100	\$0	\$16,162
			Q&A / Testing			Historical Costs	2,200	PhD Student	repurpose	0	100	\$0	\$44,000
			Q&A / Testing			Historical Costs	50	Electrical Tech	repurpose	0	100	\$0	\$5,051
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Sector Assembly	Vendor Fabrication	1	46,465	Historical Costs		Other	repurpose	0	100	\$46,465	\$0
			Procurement Support			Historical Costs	40	Mechanical Tech	repurpose	0	100	\$0	\$4,040
			Q&A / Testing			Historical Costs	50	Scientist	repurpose	0	100	\$0	\$7,853
			Q&A / Testing			Historical Costs	6,400	PhD Student	repurpose	0	100	\$0	\$128,000
			Q&A / Testing			Historical Costs	100	Mechanical Tech	repurpose	0	100	\$0	\$10,101
			Q&A / Testing			Historical Costs	100	Electrical Tech	repurpose	0	100	\$0	\$10,101
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Electronics	Procurement of Material	7680	10	Historical Costs		Other	repurpose	0	100	\$76,800	\$0
			Vendor Fabrication	7680	12	Historical Costs		Other	repurpose	0	100	\$92,160	\$0
			Vendor Fabrication	1536	31	Historical Costs		Other	repurpose	0	100	\$47,616	\$0
			Vendor Fabrication	64	444	Historical Costs		Other	repurpose	0	100	\$28,416	\$0
			Vendor Fabrication	64	234	Historical Costs		Other	repurpose	0	100	\$14,976	\$0
			Vendor Fabrication	64	668	Historical Costs		Other	repurpose	0	100	\$42,752	\$0
			Vendor Fabrication	1	242,000	Historical Costs		Other	repurpose	0	100	\$242,000	\$0
			Final Design			Historical Costs	2,080	Electrical Engineer	repurpose	0	100	\$0	\$318,594
			Final Design			Historical Costs	2,080	Electrical Tech	repurpose	0	100	\$0	\$210,101
			Procurement Support			Historical Costs	120	Electrical Tech	repurpose	0	100	\$0	\$12,121
ECE06.10.06.01	Barrel Hadronic Calorimetry	Labor to disassemble oHCAL and magnet in IP8 and reassemble in IP6											
		Remove and Lift Sectors	In House Assembly			Historical Costs	256	Mechanical Tech	Project	100	0	\$0	\$25,859
		Transport from IP8 to IP6	In-House Assembly			Historical Costs	256	Mechanical Tech	Project	100	0	\$0	\$25,859
		Lift Sector, Rotate into Position and Install	In-House Assembly			Historical Costs	768	Mechanical Tech	Project	100	0	\$0	\$77,576
		Confirm Sector Positions	In-House Assembly			Historical Costs	32	Mechanical Tech	Project	100	0	\$0	\$3,232
		Lift Magnet, Install in Shipping Cradle	In-House Assembly			Historical Costs	24	Mechanical Tech	Project	100	0	\$0	\$2,424
		Transport Magnet from IP8 to IP6	In-House Assembly			Historical Costs	24	Mechanical Tech	Project	100	0	\$0	\$2,424
		Install Magnet in flux return	In-House Assembly			Historical Costs	48	Mechanical Tech	Project	100	0	23 \$0	\$4,848
		ECCE In Kind Calculation:	\$10.057.718										

€ C C Proposal: oHCAL Example

WBS ID	WBS Name	Activity Description (Separate between conceptual design, preliminar design, final design, long lead procurements etc.)	Activity Type (Pull Down)	Units	Unit Pricing	Basis of Estimate for costing (Pull Down)	Labor Hours	Resource Name (Pull Down)	Funding Source (Pull Down)	% of cost to Project	% of cost Inkind	Direct Materials Total \$\$ (Calculated)	Total Labor cost \$\$ (Calculated)
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Steel Sectors	Vendor Fabrication	32	195,512	Historical Costs		Other	repurpose	0	100	\$6,256,384	\$0
			Final Design			Historical Costs	1,250	Mechanical Engineer	repurpose	0	100	\$0	\$191,463
			Final Design			Historical Costs	1,000	Mechanical Designer	repurpose	0	100	\$0	\$116,100
			Procurement Support			Historical Costs	40	Mechanical Engineer	repurpose	0	100	\$0	\$6,127
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Splice Plates, Pucks and Pins	Vendor Fabrication	1	209,500	Historical Costs		Other	repurpose	0	100	\$209,500	\$0
		oHCAL Support Rings, Magnet Supports	Vendor Fabrication	1	270,000	Historical Costs		Other	repurpose	0	100	\$270,000	\$0
			Final Design			Historical Costs	950	Mechanical Engineer	repurpose	0	100	\$0	\$145,512
			Final Design			Historical Costs	700	Mechanical Designer	repurpose	0	100	\$0	\$81,270
			Procurement Support			Historical Costs	40	Mechanical Engineer	repurpose	0	100	\$0	\$6,127
ECE06.10.06.01	Barrel Hadronic Calorimetry	oHCAL Scintillating Tiles	Vendor Fabrication	1	1,709,915	Historical Costs		Other	repurpose	0	100	\$1,709,915	\$0
			Procurement of Material	1			5	Mechanical Tech	repurpose	0	100	\$77,292	\$505
			Procurement of Material	1	.,	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$10,700	\$505
			Procurement of Material	48			5	Mechanical Tech	repurpose	0	100	\$7,440	\$505
			Procurement of Material	1	14,500	Historical Costs	5	Mechanical Tech	repurpose	0	100	\$14,500	\$505
			Final Design			Historical Costs	160	Mechanical Designer	repurpose	0	100	\$0	\$18,576
			Procurement Support			Historical Costs	40	Mechanical Tech	renurnose	0	100	\$0	\$4,040
			Q&A / Testing					Mechanical Tech			100	\$0	\$16,162
			Q&A / Testing								100	\$0	\$44,000
													\$5,051
ECE06.10.06.01	Barrel Hadronic Calorimetry												\$0
		Final update	S Dy BIC	Jup	3 120	Historical Costs	J ₁₀₀ し、	Mechanical Cell.	repurpose	0	100	\$0 \$0 \$0	\$10,101
ECE0 10.06.01											100	\$76,800	\$0
										0	100	\$92,160	\$0
			Vendor Fabrication					Other	repurpose	0	100	\$47,616	\$0
			Vender Pabrication					Other	repurpose	0	100	\$28,416	\$0
			Vendor Fabrication	64	234	Historical Costs		Other	repurpose	0	100	\$14,976	\$0
			Vendor Fabrication	64		Historical Costs		Other	repurpose	0	100	\$42,752	
			Vendor Fabrication	1	242,000	Historical Costs		Other	repurpose	0	100	\$242,000	\$0
			Final Design			Historical Costs	2,080	Electrical Engineer	repurpose	0	100	\$0	\$318,594
			Final Design			Historical Costs	2,080	Electrical Tech	repurpose	0	100	\$0	\$210,101
			Procurement Support			Historical Costs	120	Electrical Tech	repurpose	0	100	\$0	\$12,121
ECE06.10.06.01	Barrel Hadronic Calorimetry	Labor to disassemble oHCAL and magnet in IP8 and reassemble in IP6											
	•	Remove and Lift Sectors	In House Assembly			Historical Costs	256	Mechanical Tech	Project	100	0	\$0	\$25,859
		Transport from IP8 to IP6	In-House Assembly			Historical Costs	256	Mechanical Tech	Project	100	0	\$0	\$25,859
		Lift Sector, Rotate into Position and Install	In-House Assembly			Historical Costs	768	Mechanical Tech	Project	100	0	\$0	\$77,576
		Confirm Sector Positions	In-House Assembly			Historical Costs	32	Mechanical Tech	Project	100	0	\$0	\$3,232
		Lift Magnet, Install in Shipping Cradle	In-House Assembly			Historical Costs	24	Mechanical Tech	Project	100	0	\$0	\$2,424
		Transport Magnet from IP8 to IP6	In-House Assembly			Historical Costs	24	Mechanical Tech	Project	100	0	\$0	\$2,424
		Install Magnet in flux return	In-House Assembly			Historical Costs	48	Mechanical Tech	Project	100	0	24 \$0	\$4,848
		ECCE In Kind Calculation:	\$10,057,718										

WBS	R&D for ECCE Subsystem	Project R&D Identifier	FY22	FY23	FY24	FY25	FY26	SUBTOTAL	Comment
10.0	2 mRICH	eRD101	140,000	140,000	140,000	0	0	420,000	
10.0	2 dRICH	eRD102	260,000	200,000	77,000	0	0	537,000	
10.0	2 hpDIRC	eRD103	450,000	250,000	80,000	0	0	780,000	
10.0	2 Si Service Reduction	eRD104	42,840	85,680	85,680	71,400	0	285,600	
10.0	2 SciGlass	eRD105	90,000	50,000	50,000	0	0	190,000	
10.0	2 Forward HCAL	eRD107	100,000	200,000	100,000	0	0	400,000	This R&D would be redirected to ECCE longitudinal segmented calorimeter
10.0	2 Cylindrical MPGD	eRD108	140,000	100,000	5,000	0	0	245,000	This R&D would be for GEM/uRWELL
10.0	2 ASICS	eRD109	275,000	900,000	760,000	500,000	0	2,435,000	
10.0	2 Photosensors	eRD110	180000	80000	25000	0	0	285,000	Main R&D: Radiation hard SiPMs. LAPPD is generic R&D for cost reduction
10.0	2 Si-Vertex (excl. sensors)	eRD111	340,160	680,820	567,600	0	0	1,588,580	
10.0	2 AC-LGAD	eRD112	235,000	240,000	240,000	240,000	200,000	1,155,000	
10.0	2 Low-Mass GEM Tracker	TBD	20000	0	0	0	0	20,000	
10.0	2 Low-Q2 Taggers	TBD	100000	50000	0	0	0	150,000	
10.0	2 ZDC	TBD	100000	50000	0	0	0	150,000	
10.0	2 Si Sensor Development	TBD	740000	852000	1189000	639000	0	3,420,000	
							TOTAL	12,061,180	
OTHER E	R&D Categories not relevant	for FCCF realization							
	2 Forward EMCal	eRD106	90,000	50,000	50,000	0	0	190,000	This R&D does not seem critical for ECCE
10.0	2 Roman pots	TBD	40000	40000	20000	0	0	100,000	Main relevant R&D integrated in AC-LGAD above
	GEM TRD	TBD	70000	30000	60000	0	0		
	TOF	TBD	0	45000	90000	90000	0		
	MPGD for RICH/Nano-Diam	TBD	0	0	130000	200000	180000		
	CSGalss for HCALs	TBD	0	30000	200000	350000	250000		
	PID for high-pT	TBD	0	50000	90000	95000	100000		
	SC nanowires	TBD	0	0	200000	400000	400000		Relevant but partially included in photosensors
	Radiation hard SiPM	TBD	0	0	690000	1175000	1060000		

Mapping of EIC generic detector R&D to ECCE (Tanja)

Some optimization and merging of categories still needs to be done.

https://indico.bnl.gov/event/10974/contributions/53172/attachments/36485/59965/Detector RD Plan Aug10.2021.pdf

Outline

Detector & simulations

- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

€ C ← Proposal: Collaboration Formation

Once selected as project detector, the consortium will add new groups (most likely) and evolve into a collaboration. Here we show our initial thinking to stat a discussion.

€ (← Proposal: Collaboration Formation

Once selected as project detector, the consortium will add new groups (most likely) and evolve into a collaboration. Here we show our initial thinking to stat a discussion.

<u>Key point:</u> after proposal review, ECCE will appoint a collaboration leadership team & formulate its bylaws. While we do not decide on things now, we do need to show our vision for this process and resulting structure.

e.g.:

We envision that the successful realization of an on-time and on-budget project detector will require a collaboration leadership structure consisting of an elected IB chair and spokesperson, and a spokesperson appointed leadership team consisting of two deputy spokespersons and a series of coordinators (technical, detector resources, physics, diversity equity and inclusion, and software and computing).

€ C ← Proposal: Collaboration Formation

Envision of a 'collaboration formation meeting', soon after the proposal review, with spokesperson and IB chair election and initiation of bylaws formation process.

The decision to defer this for after the review is motivated by our desire to fully integrate new groups and best benefit from their expertise. To this end we believe it is important to allow them to take an active part in the collaboration formation process

While discussions at the 'collaboration formation meeting' will initiate based on the structure described in the proposal (that will eventually be endorsed by the ECCE consortia IB), we will have the ability to modify it as desired by the newly forming collaboration.

Code of Conduct Vote

- Final Code of Conduct document:
 - https://docs.google.com/document/d/1yWBw47xXJNLXV3zRgOmYzmDOB2rcVE3RWghghZGfuDM/edit?usp=s haring
- DE&I Team Reply to Comments:
 - Approved by IB!
 - · Voling
 - Simple majority of voting institutions required to pass
 - If you have a question, or your IB rep did not receive the email, contact us

Outline

- Detector & simulations
- Proposal
 - Physics Godparents
 - Cost & Risk
 - Collaboration formation
- Path forward

€CC€ forward: Inputs!

As we move forward, we need more input from institutions / working groups

Institutes ('EOI update'):

What are you planning to work on

At what effort level

With what in kind contribution (if any)

e.g. dRICH issue

Working groups (Sep. 27th deadline; i.e. today):

List of assumption

Detector R&D needs

Physics studies for proposal (done! ©)

ECCE Detector Scope DRAFT

Evolving with PM and DWG's – assumptions must be clearly stated in proposal

List of Assumptions

- 1) The accelerator/cryogenics scope will provide a cryogenic distribution can in the experimental Hall at IP6. The remaining scope in the Hall is included in the detector magnet.
- 2) The IR and vacuum (IR magnets, beam pipes, pumps, valves, windows, etc.) are part of the accelerator/IR scope.
- 3) The luminosity detector is included in this detector proposal and includes anything that comes behind the conversion/exit window. Up to that window is assumed to be accelerator scope.
- 4) The polarimetry scope is not included in this detector proposal as it is handled external to the proposals through the across proto-collaborations polarimetry working group.*
- 5) Any required IP-6 de-installation costs are assumed to be covered as regular laboratory operations costs.
- 6)

^{*}Note that for the CD-1 EIC Project cost estimates the polarimetry and luminosity detector scope was still covered under accelerator/IR scope.

ECCE Detector Requirements (DRAFT)

Needs additional input from DWG/PWG's

Topic	Issue	ECCE solution	Comment
Barrel PID – e/π separation: up to 10^{-2} - 10^{-4} down to 0.2 GeV	Need good EMcal resolution; need additional e/π below 2GeV	Use SciGlass with 55 cm space as option with good precision; use hpDIRC as π veto down to p = 0.3 GeV/c	Below 0.3 GeV/c can also augment with TOF. Leave 5-10cm for MRPC.
Barrel PID – π/K/p separation down to 0.2 GeV	hpDIRC covers down to 0.6 GeV, need to augment PID below this	Cover 0.2 < p < 0.6 GeV/c with TOF option	Leave 5-10 cm space for this (in region up to forward/backward TOF). Can be MRPC but allows upgrade options (AC-LGAD or LYSO-based TOF)
Hermetic coverage of edetection	Leave no gaps in e- detection while also folding in PID/hpDIRC need.	hpDIRC readout in backwards region; Moved backward EMCal 15 cm inwards; extended barrel EMCal	Good coverage for negative rapidity needs; performance needs to be verified with simulations.
Backward e-determination, e/π separation up to 10-4	Need highest precision EM calorimetry	Assume all PbWO ₄	Partial coverage with SciGlass can be scope contingency
Momentum resolution in barrel	Assume 1.5 T field	Al Optimization; base choice is 3 Si vertex layers and 2 intermediate Si outer layer µRwell	Need to work out how to stage such that early beam commissioning starts without Si.
Momentum resolution in forward/backward regions at high η	Assume 1.5 T field	Five disks forward, four disks backward to move EMCal in. Additional MPGD tracking behind dRICH and mRICH	Upgrade options: TRD for PID; AC-LGAD for tracking
Forward Hadronic calorimetry	Forward hadronic calorimetry resolution < 50%/√(E)	Longitudinally separated calorimeter to meet needs in high-η region	Upgrade Option: Dual calorimeter (or can fold in earlier in region of highest need)
Forward Particle Identification	Constrained space in forward region	dRICH based on C4F10; make use of recirculation and gas recovery systems	Recirculation and gas recovery systems for environmentally unfriendly gas use

ECCE Detector R&D Needs DRAFT

Needs additional input from DWG's – critical to show how R&D addresses risks and verifies ECCE design

Plus a GANTT chart visualization with milestones

Tonio	What B&D is peeded to	What are the milestones to
Topic	What R&D is needed to	What are the milestones to
	realize the ECCE Detector	validate R&D for the ECCE
		Detector
mRICH (eRD101)		
dRICH (eRD102)		
hpDIRC (eRD103)		
Si Service		
(eRD104)		
SciGlass	Prove that SciGlass is a viable cost-	Beam test with small prototype (2021)
(eRD105)	effective solution	Scale-up from 20 cm to 45 cm
		(2021/22)
		Test different geometries (2022)
Forward		
Calorimeter		
(eRD106/eRD107)		
MPGD (eRD108)	Prove that µRwell with capacitive	
	readout works	
ASICS (eRD109)		
Si-Vertex		
(eRD111)		
AC-LGAD		
(eRD112)		

Today, September 13th

Tasks	Duration	April May	June	July	Aug	Sept	Oct	Nov	Dec
	(months)								
Startup	1.5								

Only 5 4 more biweekly meetings until the proposal is due!

Review by external colleagues
Final edits
Proposal Submission (1 Dec. 2021)

Keep it up!

DWG and PWG Deadlines

- In order to keep to the schedule we have to write the proposal and have time to do some external review, we have to set the following deadlines:
- Input for List of Assumptions and Detector Requirements:
 - DRAFT: Sept. 20, 2021
 - FINAL: Sept 27, 2021
- Input for Physics Plots:
 - First DRAFT: (list of plots and descriptions) Sept. 17, 2021
 - Second DRAFT: (plots w/partial stats and/or analysis) Oct 8, 2021
 - FINAL: Oct 22, 2021