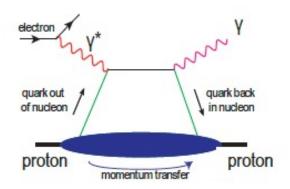
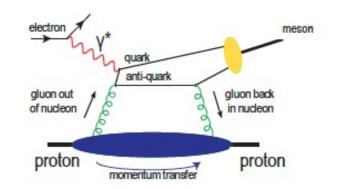
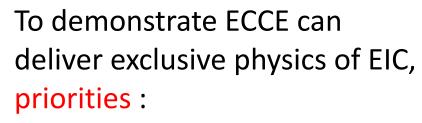
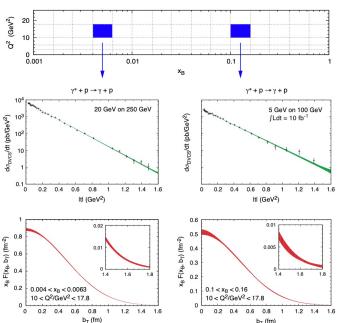

Exclusive
Reactions
Working Group
Update

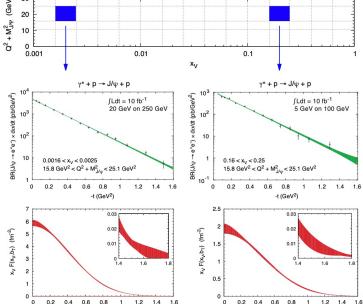

ECCE IB Meeting 27/09/21


Co-convenors:


- J. Roche (Ohio University)
- R. Montgomery (University of Glasgow)

EIC Exclusive Physics and Priorities for our Group





- DVCS
- DVMP

γ production (DVCS) from ep

Absolutely key for:

- GPD extractions
 - nucleon OAM and spin
- Transverse profiles of quarks and gluons
- multi-dimensional imaging of quarks and gluons in nucleons/nuclei

From EIC "white paper"

Exclusive Studies and Team Members

- Physics Convenors: C. Camacho (Orsay); R. Reed (LU)
- Exclusive Co-convenors: J. Roche (OU); R. Montgomery (UoG)
- DVCS ep: I. Korover, MIT (NAS topic 1)
- DVCS eA (⁴He): G. Penman, UoG (NAS topic 1 and 7)
- DVMP ep: N. Santiesteban, MIT; S. Fegan, UoY; M. Boer, VT (NAS topic 1 and 4)
- DVMP eA (several A) (J. Frantz, OU) (NAS topic 1, 8, (7))
- Above closely linked to and working together with eA diffractive studies within diffractive group, M. Baker, D. Gangadharan, A. Schmidt, P. Steinberg (BNL, UH, GW)
- Timelike Compton Scattering ep (K. Gates, UoG) (NAS topic 1)
- All of above reactions require far forward instrumentation
 - Final state particles for exclusivity
 - Low p_t acceptance, t-reconstruction important for physics
 - Separation of coherent from incoherent...
- Working in collaboration with assistance from diffractive group W. Li (W&M) and A. Schmidt (GW)
 - Lot's of computational assistance from Bill thank you a lot

NAS topics:

- 1) Tomographic Imaging of Quarks and Gluons
- 2) Heavy-quarkonia exclusive production at threshold
- 3) 3D imaging in Momentum Space
- 4) Gluon spin and orbital motion
- 5) Transverse motion in polarized nucleons
- 6) Propagation of energetic quarks through matter
- 7) Properties of Nuclei in QCD
- 8) Diffraction

What Plots Are We Currently Aiming For?

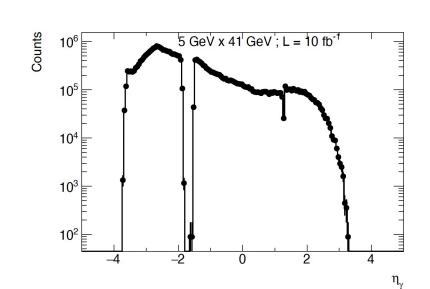
DVCS ep, DVCS eA, DVMP ep, TCS ep

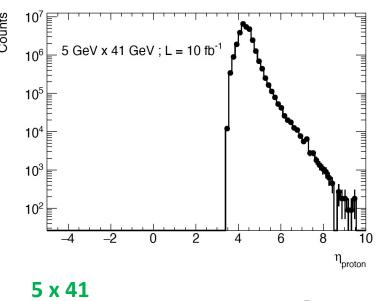
- pseudorapidity distributions for final state particles
 - detector acceptance
- detector efficiency vs pseudorapidity for final state particles
 - detector acceptance
- physics quantities distributions (e.g. phase space plots for $x_B/t/p_T$ vs Q^2 , ϕ , missing mass or invariant mass)
 - detector acceptance and performance/resolution
- money plot: differential cross section vs physics variables (t, p_T , Q^2 , x_B) (for DVCS ep show DVCS² vs full process)
 - low p_T acceptance in forward region

DVMP eA

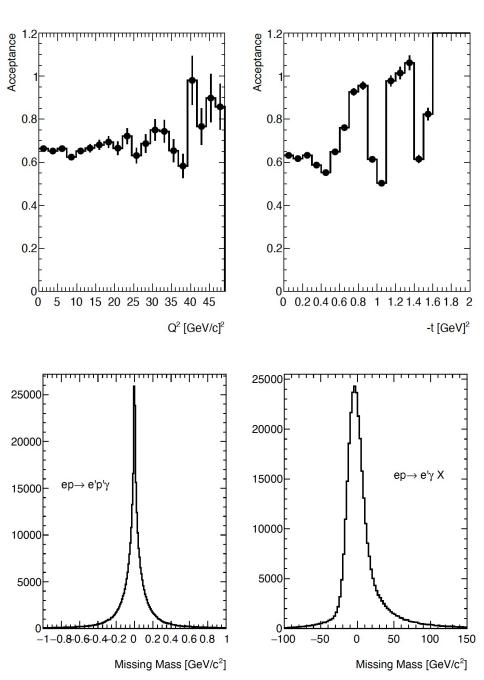
- money plot: differential cross section vs t and vs Q²
 - low p_T acceptance in forward region
 - rejection in forward region
- detector efficiency vs pseudorapidity for final state particles
 - detector acceptance
- (additionally, if time allows, related detector performance and explanatory plots concerning forward rejection linked to/from P. Steinberg/diffractive note)

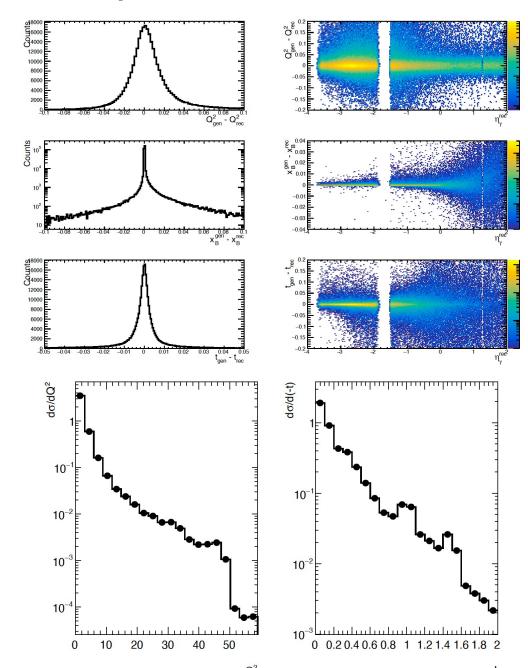
Nb: All plots shown today are preliminary/under study. Supplied by names indicated to give a flavour of our status...

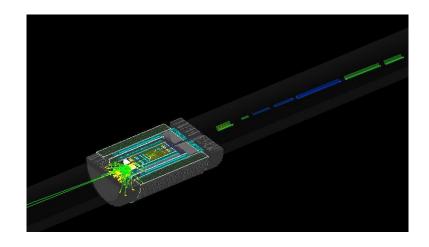

All plots: I. Korover (MIT)


e'

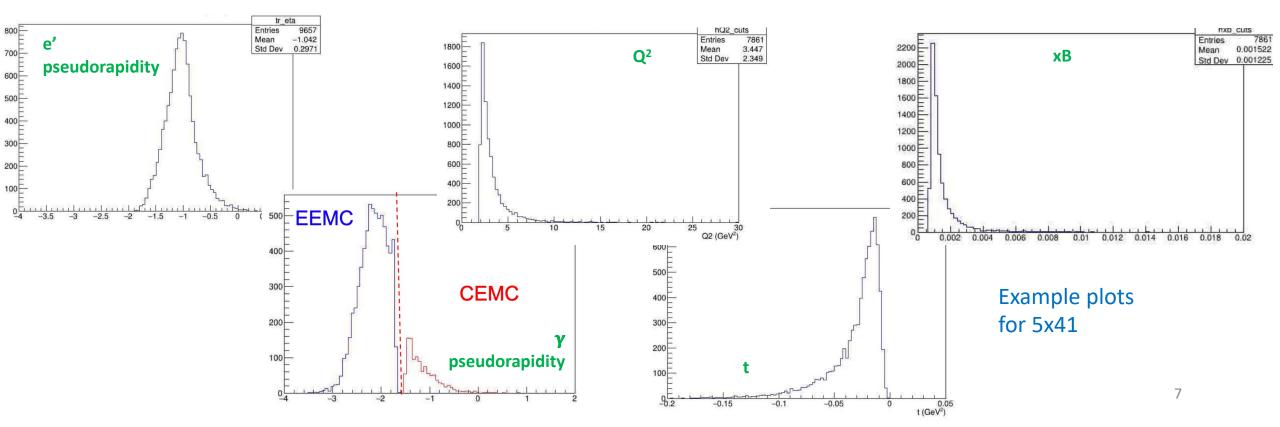
5 GeV x 41 GeV; L = 10 fb⁻¹ 10⁴ 10³ 10² -4 -2 0 2 4 η_{electron}


DVCS ep (ep \rightarrow ep γ)

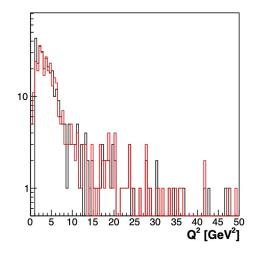

- MILOU3D generator [<u>hep-ph/0411389v1</u>] (access to DVCS; BH; DVCS+BH+INT)
- Current status:
 - Simulated at IP6 for: 5x41; 10x100; 18x275 GeV
 - Plots from list completed except inclusion of acceptance of proton in forward region
- Outstanding:
 - Include acceptance of final reconstructed proton (underway)
 - Add pure DVCS contribution to cross section plots to compare with full process (to-do)
- Example plots from list shown for 5x41 setting (other settings exist, not shown)

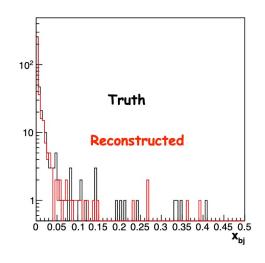


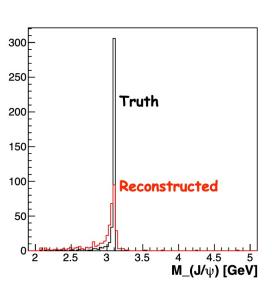
Using plot template from P. Steinberg

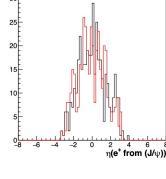


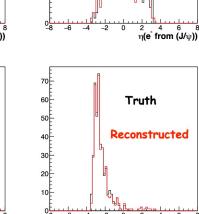
All plots: G. Penman (UoG)

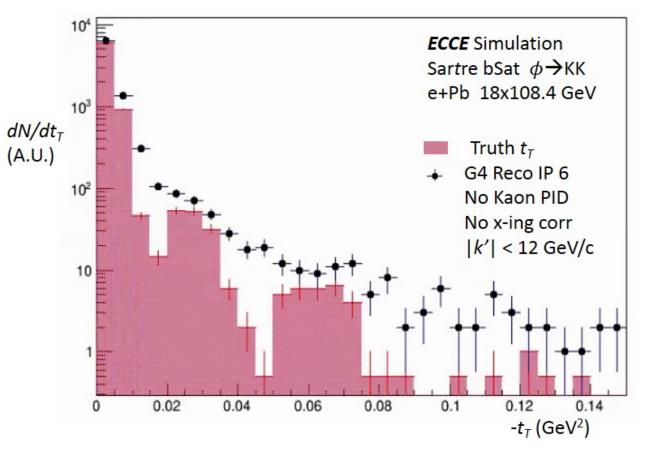



DVCS eA ($e^4He \rightarrow e^4He\gamma$)


- TOPEG generator (https://gitlab.in2p3.fr/dupre/nopeg)
- Plan IP6 and IP8: 5x41 (per nucleon) (and higher setting if time allows)
- Current status:
 - Framework for plots mostly completed (finalising reconstructed helium)
 - 5x41 fun4all output exists
- Outstanding:
 - Scale plots for efficiency and cross sections (underway)
 - Include acceptance of final reconstructed helium (underway)



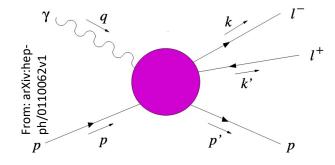

DVMP ep (ep \rightarrow epJ/ $\psi \rightarrow e^-pe^+e^-$)

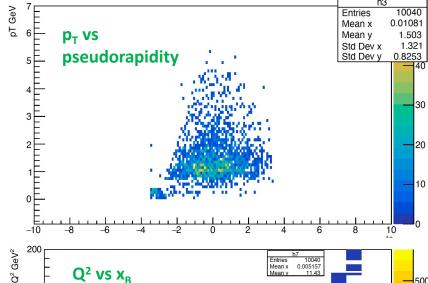


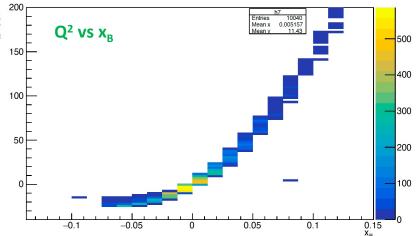
- IAger generator (https://eicweb.phy.anl.gov/monte_carlo/lager)
- Plan IP6 and IP8 : 5x41; 5x100; 10x100; 18x275
 GeV
- Current status:
 - IAger generator files ready (S. Fegan)
 - Fun4all output for IP6 and IP8: 10x100, 18x275 GeV
 - Analysis underway:
 - e⁺,e⁻,e['] and J/Ψ reconstructed
 - some physics plots checked
 - (missing mass, Q^2 , x_B)
- Outstanding:
 - scale plots for efficiency and cross sections and final physics plots (underway)
 - include acceptance of final proton (underway)
 - complete fun4all simulations (to-do)
 - if time, include other mesons, e.g. rho, omega, upsilon... M. Boer VT generator
- Example plots for 18x275 shown

Plot: J. Frantz (OU)

DVMP eA (eA \rightarrow e φ A \rightarrow eK+K-A)




- Some comments on plot (J. Frantz, P. Steinberg):
 - Plot resolution limited by tracking resolution for electron in very far forward region
 - Plan to check if either using calorimeter info instead of tracking, or limiting phase space improves shape
 - 5x41 setting may help tracking resolution impact


- Selected φ due to greater sensitivity to gluon saturation than J/ψ
- Sartre generator (https://sartre.hepforge.org/)
- Plan IP6 and IP8:
 - 18x108.4(Pb) GeV
 - equivalent setting for Zr
 - ie 4 money plots (see left example)
 - 5x41 possibility (time permitting)
 - e+Au possibility (but low priority)
- Current status:
 - Fun4All output for 18x108.4GeV Pb at IP6
 - Fun4All output for BeAGLE incoherent background for Pb and Zr, and both IP
 - $\rho \rightarrow \pi + \pi$ Sartre generator output for final state mis-ID background study
 - Main analysis script for money plot set up
- Outstanding (to-do):
 - Fun4All processing for $Zr \phi$ signal and ρ background
 - Inclusion of backgrounds to money plot
 - Add additional graphs (e.g. pseudorapidity or physics distributions, these should be quick)

All plots: K. Gates (UoG)

Timelike Compton Scattering

- Exclusive photoproduction of heavy timelike photon which decays to lepton pair (e⁺e⁻)
- Analogous to DVCS ep and complementary for access to GPDs
 - test spacelike-timelike and universality of GPDs
- Generator:
 - EpIC P. Sznajder (Warsaw Inst. Nucl. Studies) and K. Tezgin (BNL)
 - Recently updated for this round of EIC proposal studies (liaison via UoG)
- Current status:
 - Simulated for IP6: 5x41; 10x100; 18x275
 - Working on analysis
 - Reconstructed physics variables
 - Working on event selection and reconstruction
 - Starting to work in tandem with DVMP since same final state
- Outstanding:
 - Complete analysis
 - Final event selection/reconstruction technique
 - Create pseudorapidity, efficiency and cross section plots

Summary

- Reactions for NAS topics 1, 4, 7, 8 being studied in Exclusive Reactions Working Group
 - Priority DVCS and DVMP reactions are focused on topic 1 tomographic imaging of quarks and gluons
- Low p_t acceptance and t-reconstruction crucial for priority DVCS and DVMP reactions
- DVMP eA also insightful study for tracking resolution capabilities
- All generators were new to us
- Team is progressing very quickly with analysis and mass simulations
 - Plots constantly being produced
 - End goals clear
 - Expect no show-stoppers
- Global to-do: re-run all reactions with most recent detector implementation/on-going mass simulation (campaign 2) (timescale for sims ~1wk)
- Have a note set up but need to start filling it in ...