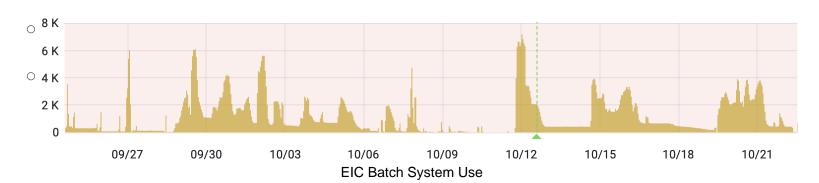
ECCE Physics Benchmarks Team Bi-weekly Meeting Report

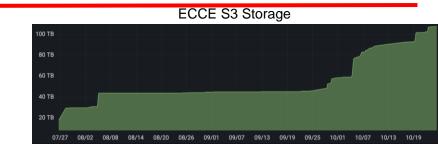
October 24th, 2021

Carlos Muñoz, Rosi Reed

Analysis notes

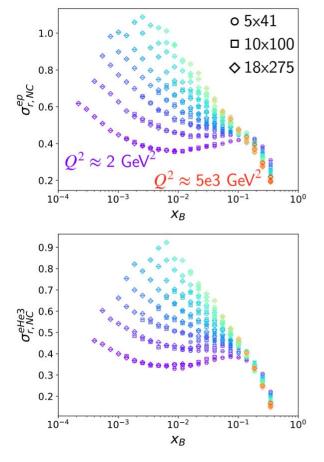
1	ECCE ID	Topic	Responsible	Github	Overleaf
2	ecce-note-phys-2021-01	Jet performance note	Tristan Protzman	https://githu	https://www
3	ecce-note-phys-2021-02	Diffractive and tagging group note	Bill Li, Axel Schmidt	https://githu	https://www
4	ecce-note-phys-2021-03	Exclusive processes group note	Julie Roche, Rachel Montgomery	https://githu	https://www
5	ecce-note-phys-2021-04	ReA for D&B	Xuan Li	https://githu	https://www
6	ecce-note-phys-2021-05	SIDIS kinematics	Ralf Seidl & Charlotte van Hulse	https://githu	https://www
7	ecce-note-phys-2021-06	SIDIS spin asymmetries with single hadr	Ralf Seidl & Charlotte van Hulse	https://githu	https://www
8	ecce-note-phys-2021-07	SIDIS unpolarized TMD measurements	Ralf Seidl & Charlotte van Hulse	https://githu	https://www
9	ecce-note-phys-2021-08	Jet ReA	Raymond Ehlers	https://githu	https://www
10	ecce-note-phys-2021-09	Inclusive processes group note	Tyler Kutz & Claire Gwenlan	https://githu	https://www
11	ecce-note-phys-2021-10	Centauro jets (JL)	John Lajoie	https://githu	https://www
12	ecce-note-phys-2021-11	SIDIS (unspecified topic)	Ralf Seidl & Charlotte van Hulse	https://githu	https://www
13	ecce-note-phys-2021-12	Spectroscopy	Derek.Glazier@glasgow.ac.uk	https://githu	https://www
14	ecce-note-phys-2021-13	Dihadrons	Nathan grau	https://githu	https://www
15	ecce-note-phys-2021-14	BSM group note	xiaochao@jlab.org	https://githu	https://www
16	ecce-note-phys-2021-15				

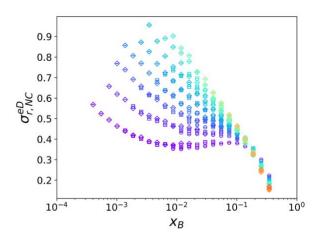

14 analysis notes produced by the 6 physics WG


Physics plots for proposal

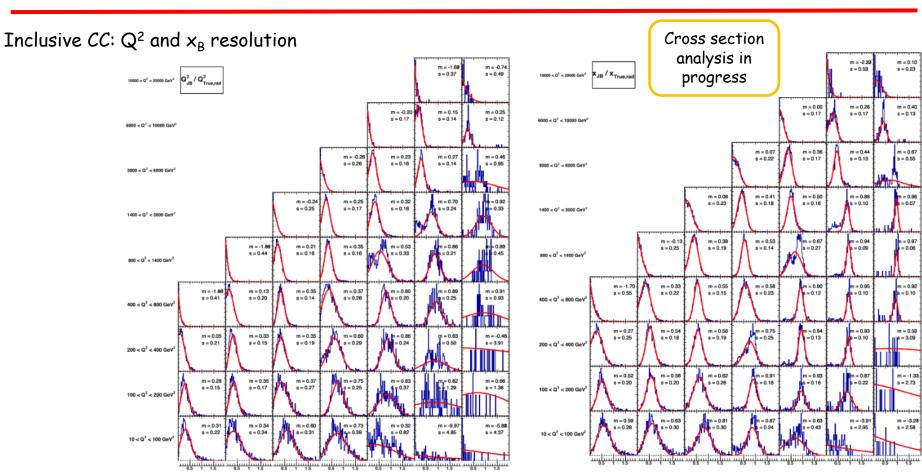
Plot	NAS topic	Additional NAS topic	Person in charge	WG			
xB, Q2 resolution vs. x, Q2 for different reconstruction methods	Detector performance		Claire	Inclusive	1) Tomographic Imaging of Quarks and Gluons	MASS	
Inclusive NC e+P cross section vs. xB, for bins of Q2	7		Tyler	Inclusive	2) Heavy-quarkonia exclusive production at threshold	MASS	
Inclusive NC e+D cross section vs. xB, for bins of Q2	7		Tyler	Inclusive	3) 3D imaging in Momentum Space	MASS	
Inclusive NC e+He3 cross section vs. xB, for bins of Q2	7		Tyler	Inclusive	4) Gluon spin and orbital motion	SPIN	
Proton structure functions F2, FL, xF3 vs. xB	7		Sonny, Tyler, Claire	Inclusive	5) Transverse motion in polarized nucleons	SPIN	
Deuterium structure functions F2, FL, xF3 vs. xB	7		Sonny, Tyler, Claire	Inclusive	6) Propagation of energetic quarks through matter	DENSE GLUONS	
Helium-3 structure functions F2, FL, xF3 vs. xB	7		Sonny, Tyler, Claire	Inclusive	7) Properties of Nuclei in QCD	DENSE GLUONS	
Proton double-spin asymmetry ALL vs. xB	4	7	Jackson, Tyler, Claire	Inclusive	8) Diffraction	DENSE GLUONS	
Helium-3 double-spin asymmetry ALL vs. xB	4	7	Jackson, Tyler, Claire	Inclusive			
Proton double-spin asymmetry ALT vs. xB	4	7	Needs assignment	Inclusive			
Constraints on unpolarized PDFs vs. xB : IMPACT	7		Claire, Eimear	Inclusive			
A1p, A1He3, A1n vs. xB (A1n extracted from A1p, A1He3) : IMPACT	4	7	Jackson	Inclusive			
Constraints on polarized PDFs vs. xB : IMPACT	4	7	Needs assignment	Inclusive			
Mean Delta z/z values in bins of x and Q2 for the scattered lepton kinematic reconstruction method	Detector performance		Ralf, Charlotte	SIDIS			
A UT Sivers sin(\phi h - \phi S) or Collins sin(phi h + phi S) asymmetry moments for pi+ and pi- vs	z 3	5	Ralf	SIDIS			
Up and down quark Sivers functions as a function of k T in several bins of x (YR Fig 7.53)	3	5	Ralf	SIDIS			
A LL double helicity asymmetries for pi+/- and K+/-\$ as a function of x in bins of Q2 and z	4		Charlotte	SIDIS	Discussions stai	rted among PWG	
Expected impact of the EIC on the anti-up, anti-down and strange quark helicities (YR Fig 7.19)	4		Charlotte	SIDIS	Discussions star	rea among r we	
Nuclear modification factor (ReA) of J/psi vs momentum fraction (z)	6		Xinbai Li and Wangmei Zha	Jets & HF			
Projected uncertainties for the nuclear modification factor (ReA) of open heavy flavor vs momentum		6 Xuan Li Jets & HF CONVENERS		conveners and	nd Godparents to		
Jet energy scale and resolution vs jet energy		Detector performance		leed Jets & HF			
Jet ReA vs jet pT	6		Raymond Ehlers	Jets & HF			
Dihadron azimuthal angle correlation: delta phi distribution	1		Nathan Grau	Jets & HF	shaaga tha hag	t act of plata to	
Jet eta vs. jet z for primary particle jet, reconstructed track jet and reconstructed track+cluster jet	3		John Lajoie	Jets & HF	choose the bes	t set of plots to	
Reconstructed track+cluster jet g perp vs. z	3		John Lajoie	Jets & HF		•	
Distribution of jet charge for u-quark and d-quark jets	3		John Lajoie	Jets & HF			
Distribution of jet sharge for a quark and a quark jets	, ,		John Edjoid	0010 0 111	feature in t	the proposal	
DVCS (ep) cross section vs t, Q2 and xB	1		Igor	Exclusive	Carare III	ine proposar	
Dectector acceptance and efficiency for DVCS (ep) vs rapidity	Detector performance		Igor	Exclusive			
DVCS (He4) cross section vs t, Q2 and xB	1	7	Gary	Exclusive			
Dectector acceptance and efficiency for DVCS (He4) vs rapidity	Detector performance		Gary	Exclusive			
Exclusive J/Psi cross section vs t, Q2 and xB	1	4	Nathaly, Stuart	Exclusive			
Dectector acceptance and efficiency for DVCS (J/Psi) vs rapidity	Detector performance		Nathaly, Stuart	Exclusive			
Exclusive phi (eA) cross section (or asymmetries) vs t	1	8	Justin	Exclusive			
Dectector acceptance and efficiency for DVCS (for exclusive phi) vs rapidity	Detector performance		Justin	Exclusive			
TCS cross section (or asymmetries) vs t, Q2 and xB	1		Kayleigh	Exclusive			
Dectector acceptance and efficiency for DVCS (for TCS) vs rapidity	Detector performance		Kayleigh	Exclusive			
Pion form factor vs Q2	1		S. Kav. G. Huber	Diffractive & Tagging			
Pion structure function vs x	1		R. Trotta	Diffractive & Tagging			
A1n through e-He3 vs x: 5x41 GeV/u	7		D. Nguyen, J. Pybus	Diffractive & Tagging			
eA diffraction: d sigma/dt vs t	8		M. Baker. P. Steinberg	Diffractive & Tagging			
Electroweak mixing angle vs. Q2 (ep and eD)	N/A		Xiaochao	Electroweak & BSM			
Reconstructed Tau lepton decay length vs. truth decay length	Vertex tracking detector perform	nanco	Jinlong Zhang	Electroweak & BSM	TBC		

Simulation WG

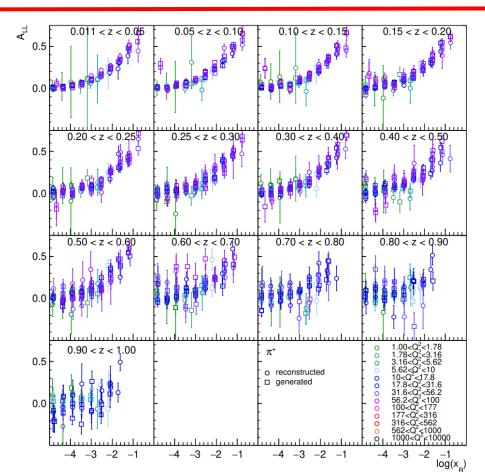

- Second simulation campaign is complete
 - Includes all re-runs and re-processing
 - See production table for locations of all samples
- Third campaign will be underway soon
 - Waiting for two more subsystem updates
 - Will update detector positions after final decision on layout



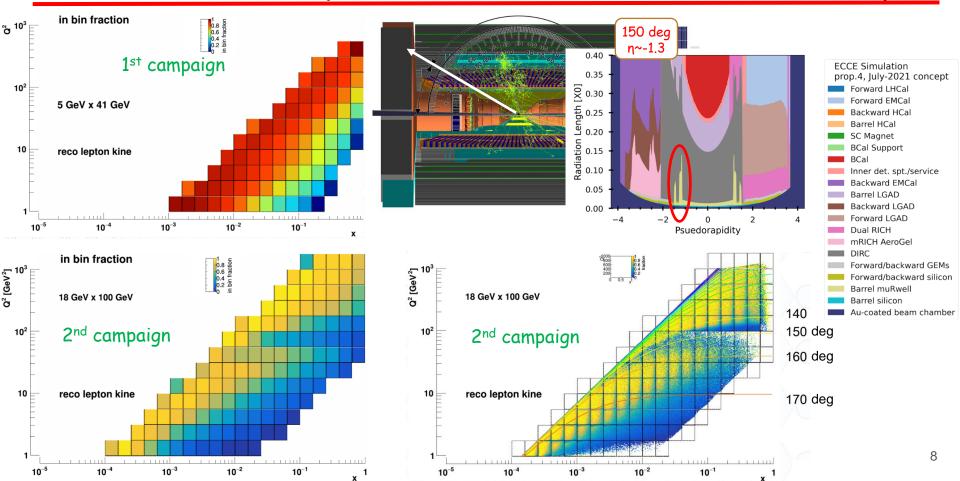
Inclusive reactions WG


Inclusive NC cross sections

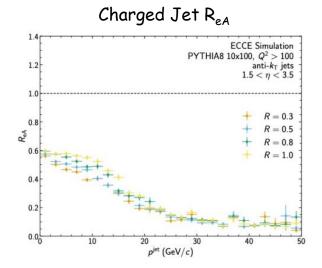
- Updating structure function extractions (existing used fast smearing cross sections)
- ECCE-style plot for note


Inclusive reactions WG

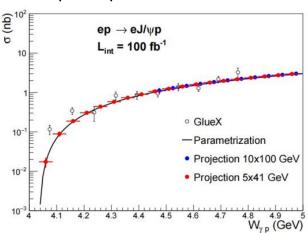
Semi-inclusive reactions WG

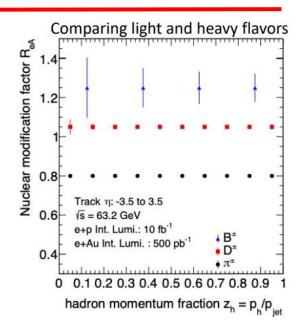

- A_{LL} asymmetry on proton for π +
- 50% stat of the low Q² 18x100 sample
- Uncertainties need to be scaled to 10fb-1

Full statistics results and other beam energy settings will be sent to theorists for evaluation of impact in helicity PDFs

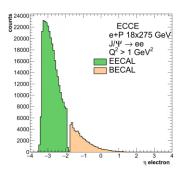

Analysis notes being updated with 2nd campaign data

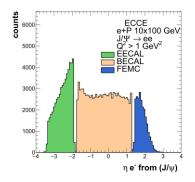
SIDIS WG: lepton reconstruction inefficiency

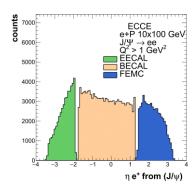


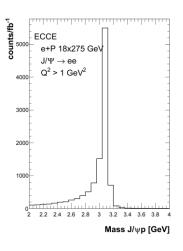

Jets & HF WG

- Most analyses almost finished
- > 5 analysis notes in progress

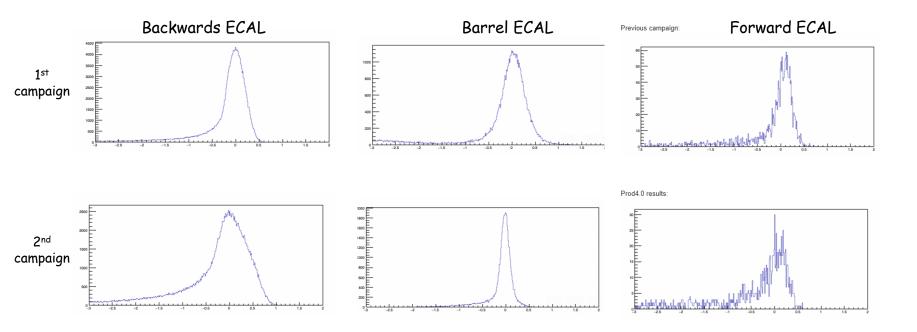






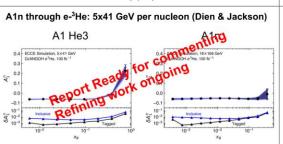

Exclusive reactions WG

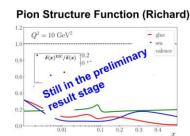
- Most recent major update/news is inclusion of DVMP ep results in our note:
 - e.g. plots below from N. Santiesteban (MIT) for 18 x 275 GeV setting:

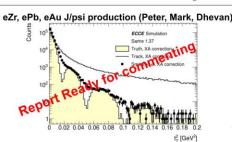


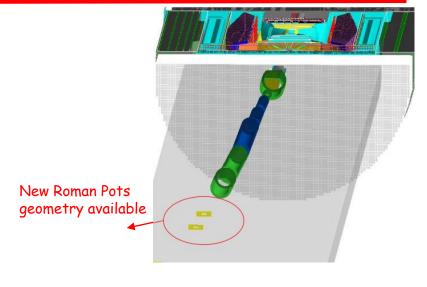
- Majority of final material required for completion of note in overleaf (see DVMP ep below)
- Currently performing final tidying/edits/checks/refinements
- Status on reactions:
 - DVCS ep text and plots finished, will check for any final missing details
 - DVCS eA text and plots finished except inclusion of scattered He momentum resolution (<1day work)
 - TCS ep same as above
 - Phi production in eA text and plots finished except inclusion of one final background study (<1day work)
 - DVMP ep plots finished, text started but needs finishing (couple days work)
- Currently discussing in group next steps for follow up studies we wish to be ready before Dec 1, e.g. background and IP 8 studies in case of follow up questions

Exclusive reactions WG: ECAL resolution issues


- Cannot be reproduced by Calorimeter WG
- Probably a incorrect use of the calorimeter afterburner


Diffractive & Tagging WG


Updates:


- > Code available to easily convert from global to local coordinates in far-forward detectors (RP, BO, etc) works for IP6 & IP8
- New Roman Pots geometry implemented
- Analysis note almost completed (below some examples of physics plots)

Upcoming work:

- . Concentrate on completing the last priority item
 - Pion Structure function
- Next for other studies?
 - Pion Form Factor: IP8 vs IP6, 1.4T vs 3T studies
 - eA diffractive: 1.4 vs 3T study
 - eHe3: refining stage
 - Lower priority studies
 - u-Channel π^0 and ω studies

Y exclusive production

Summary & Outlook

- > All physics WG finalizing analyses and corresponding notes
- > Most of the content is already available in the notes
- Call for volunteers to review analysis notes!
- > Discussions ongoing with Godparents to choose plots and physics narrative around them

- > 3rd simulation campaign will start soon, but will not impact most of the physics analyses
 - SIDIS WG will check improvement in tracking efficiency at ~150 deg.

Open questions:

- > Want to simulate some IP8 data?
- > Want to simulate some 3T data?

Fun4All is ready for that, if needed...