ECCE Physics Benchmarks Team IB Meeting Report

November 22nd, 2021

Carlos Muñoz, Rosi Reed

Laboratoire de Physique des 2 Infinis

Analysis Notes

ECCE ID	Торіс	Responsible
ecce-note-phys-2021-01	Jet performance note	Tristan Protzman
ecce-note-phys-2021-02	Diffractive and tagging group note	Bill Li, Axel Schmidt
ecce-note-phys-2021-03	Exclusive processes group note	Julie Roche, Rachel Montgomery
ecce-note-phys-2021-04	ReA for D&B	Xuan Li
ecce-note-phys-2021-05	SIDIS kinematics	Ralf Seidl & Charlotte van Hulse
	SIDIS spin asymmetries with single	
ecce-note-phys-2021-06	hadrons	Ralf Seidl & Charlotte van Hulse
	SIDIS unpolarized TMD	
ecce-note-phys-2021-07	measurements	Ralf Seidl & Charlotte van Hulse
ecce-note-phys-2021-08	Jet ReA	Raymond Ehlers
ecce-note-phys-2021-09	Inclusive processes group note	Tyler Kutz & Claire Gwenlan
ecce-note-phys-2021-10	Centauro jets (JL)	John Lajoie
ecce-note-phys-2021-11	SIDIS (A_LL)	Ralf Seidl & Charlotte van Hulse
ecce-note-phys-2021-12	Spectroscopy	Derek.Glazier@glasgow.ac.uk
ecce-note-phys-2021-13	Dihadrons	Nathan grau
ecce-note-phys-2021-14	BSM group note	xiaochao@jlab.org
ecce-note-phys-2021-15	Quarkonium note	Xinbai Li
ecce-note-phys-2021-16	3T vs. 1.4T comparison	Or Hen

Analysis Notes

- All Physics notes have had at least one official release
 - Notes written in Overleaf \rightarrow Version Control in github
 - Reviewers commented on nearly all notes
- Second release in response to reviewers for most notes
 - Goal is for notes to be finished by the Dec 1st proposal deadline

Simulation WG

- All simulation production requests are either <u>complete or finishing the</u> <u>last few events</u>!
- As proposal is due next week, there will be no more simulations for that
 We will start thinking about "homework" productions for December
- For writers, there are 2 computing notes (out of 3) that can be cited for simulation and reconstruction descriptions. Link to DRAFTs are here

```
Large Scale Sim Description
@misc{ecce-note-comp-2021-01,
title={{ECCE Computing Plan}},
note={\url{<u>https://TBD</u>}},
year={2021}
```

```
Sim Campaign Layout and Reconstruction
@misc{ecce-note-comp-2021-02,
title={{ECCE Software and Simulations for
the Detector Proposal}},
note={\url{https://TBD}},
year={2021}
```

SIDIS WG

Inclusive WG

Total uncorrelated systematics 1.9-2.3% (consistent with YR)

- Pion background uncertainty from simulated π/e ratio + pion rejection from calorimetry
- Resolution/acceptance uncertainty as fraction of difference between Born/ reconstructed cross sections
- Assume same radiative corrections/bin centering uncertainty as YR
- Estimate eA statistics by scaling ep by F_2^d/F_2^p , F_2^A/F_2^d

Diffractive and Tagging WG

- F_π → insight into Dynamical Chiral Symmetry Breaking, transition between non-perturbative regimes+ origin of hadron mass
- Plot shows reach for 10⁴⁰ cm⁻² of 5x100, determined from
 - $\circ ep \rightarrow e'\pi^+n$
- Requires the central detector (barrel + hadron end-cap) w/n tagged in the ZDC
- ZDC performance is critical for separating exclusive events from background + *t* reconstruction.

Jets and HF WG

- Dihadron correlations allow a determination of the saturation scale
- HF jet analysis used PYTHIA8 + ECCE detector conceptual design for 10x100 GeV²
 - Study the hadronization process

Exclusive Working Gr

0 0.20.40.60.8 1 1.21

Q² [GeV/c]²

EW/BSM WG

Update – SMEFTs

$$L = L_{SM} + \sum_{i} C_{i} O_{i} + \dots$$

with the projected data on PVDIS asymmetries:
 P4: ep 10x275 GeV 100 fb⁻¹; D4: eD 10x137 GeV 100 fb⁻¹

10

Radja Boughezal, Frank Petriello, Daniel Wiegandhttps://arxiv.org/abs/2004.00748"Removing flat directions in SMEFT fits: how polarized electron-ion collider data can complement the LHC"

Conclusions/Outlook

- Analysis Notes nearly done with the review process → Likely further edits needed after proposal comments and reviews
- Discussion on methodology for releasing some (all?) notes once review process is complete is needed
- Many thanks to all our WG conveners for this process!
- Simulation requests are essentially done until we have "homework"
- First priority is ensuring proposal plots are in the shape that they need to be

Back-Up

Reminder: Top Physics Priorities

Inclusive

- F2A @ low-x [Saturation, nuclei]
- A1p vs. x [Spin & Flavor, nucleon]
- A1n vs. x [Spin & Flavor, nucleon]
- Twist-3 gTq vs. x [Spin & Flavor]
 SIDIS
- Quark Sivers function [Momentum imaging, nucleon]
- Sea quark helicities via SIDIS A1 A_{LL} measurements [Spin & Flavor, nucleon] -

Electroweak and BSM

- Parity violating asymmetries
- Charged Lepton Flavor Violation
 Heavy Flavors and Jets
- In medium correction for heavy flavor [Hadronization, nuclei]
- Di-hadron correlations [Saturation, nuclei]

Exclusive

- DVCS ep [Position Imaging, nucleon]
- DVCS eA [Position Imaging, nuclei]
- J/ψ production in ep [Position Imaging, nucleon]

Diffractive & Tagging

- A1n from double tagged ³He [Spin & Flavor]
- Diffractive meson (J/ψ) production [Saturation]
- Pion structure [Mass]
- Kaon FF [Mass]