EIC Tracking and PID studies beyond the Yellow Report

arXiv:2102.08337

Rey Cruz-Torres, Wenqing Fan ECCE Detector Meeting 05/11/2021

Integrated (Barrel+Disks) All-Silicon Tracker Concept

- Geometry made out of Alice ITS2-like staves (material budget X/X0 = 0.3%)
- silicon pixel of 10 µm pitch based on Monolithic Active Pixel Sensor
- Simulations carried out in the Fun4All fullsimulation framework

Momentum resolution vs. pseudorapidity

Complementing All-Si tracker with other detectors

Momentum resolution vs. momentum

Can we get better performance at mid rapidity?

Complementing the all-si tracker in the barrel region

Variant #1:

All-silicon tracker + GEM outside the DIRC

Variant #2:

Outermost two barrel layers replaced with a GEM, and a second GEM added outside the DIRC

All-si tracker material budget (X/X0):

- Vertexing layers: 0.05%
- Barrel Layers: 0.55%
- **–** Disks: 0.24%

GEM Material Budget Effect

all-si + DIRC + GEM (R = 92 cm)

all-si outer two layers replaced with GEM (X/X0=0.7%) + DIRC + GEM (R = 92 cm) all-si outer two layers replaced with GEM (X/X0=2.4%) + DIRC + GEM (R = 92 cm)

31216

DIRC radius effect

Previous study assumes outer GEM is very close to DIRC	n	<i>R_n</i> [cm]
(and there is no additional material between DIRC and	6	43.30
all-Si tracker)	7	49.90
The distance between scattering centers and tracking	8	56.57
layers affects the momentum resolution	9	63.30
Study effect of changing DIRC radius	10	70.06
Olday chect of changing Diric radius	11	76.85
DIRC modules exist (BaBar), so DIRC radius is quantized	12	83.65
	0514	
GEM GEM	GEM	

DIRC-radius effect

AII-Si + DIRC + GEM (R = 92 cm)

Interim Summary

- Studied All-Silicon tracker prototype for the EIC in full simulations
- \bullet Current concept uses Alice ITS2 staves and 10 μm pitch MAPS sensor
- Tracker does not supply the YR PWG requirements in the entire kinematical region considered
- Momentum resolutions can be enhanced by complementing detectors with additional tracking stations
- Amount of material and placement inside active tracking region may have a significant impact on tracking performance

This requires close coordination with PID efforts

Low p threshold for RICH detectors

EICUG YR

						Threshold (GeV/c)			
Physics requirements:			radiator	index	e	π	Κ	р	
Rapidity	$\pi/K/p$ and $\pi0/\gamma$	e/h	Min pT (E)	quartz (DIRC)	1.473	0.00048	0.13	0.47	0.88
-3.51.0 7	7 GeV/c 18 Ge	18 GeV/c	//c 100 MeV/c	aerogel (mRICH)	1.03	0.00207	0.57	2.00	3.80
0.0 1.0	,,.	10 001,0	200	aerogel (dRICH)	1.02	0.00245	0.69	2.46	4.67
-1.0 – 1.0	8-10 GeV/c	8 GeV/c	100 MeV/c	C_2F_6 (dRICH)	1.0008	0.01277	3.49	12.34	23.45
1.0 - 3.5	50 GeV/c	20 GeV/c	100 MeV/c	<i>CF</i> ₄ (gRICH)	1.00056	0.01527	4.17	14.75	28.03

Table 11.23: Table of Cherenkov thresholds for various media.

Path length calculation for $\eta=0$

path length L = $2r_{track} asin(0.5R_{TOF}/r_{track}) \rightarrow function of p$

Toy MC simulation

- Throw particles (π , K, proton) of different p at $\eta=0$
 - Calculate path length L \rightarrow time of flight t_{flight} = L/velocity
 - Truth: $t_0 = 0$, $t_f = t_0 + t_{flight} = L/velocity$
 - $\beta = L^{reco} / [(t_f^{reco} t_0^{reco}) \cdot c]$
 - t_f^{reco} : smear t_f by 20 ps
 - t_0^{reco} : smear t_0 by 20 ps
 - L^{reco}: smear L by 1%
- Extract the high p limit of 3σ separation

Toy MC simulation

- Throw particles (π , K, proton) of different p at $\eta=0$
 - Calculate path length L \rightarrow time of flight t_{flight} = L/velocity
 - Truth: $t_0 = 0$, $t_f = t_0 + t_{flight} = L/velocity$
 - $\beta = L^{reco} / [(t_f^{reco} t_0^{reco}) \cdot c]$
 - t_f^{reco} : smear t_f by 20 ps
 - t_0^{reco} : smear t_0 by 20 ps
 - L^{reco}: smear L by 1%
- Extract the high p limit of 3σ separation
- Run for different R (5, 10, ...120cm) location

Effect of B field

 One needs to be very careful with the low momentum cutoff due to the strong B field (espicially 3T)

 $p_T \,[\text{GeV}/c] = 0.3 \cdot B \,[\text{T}] \cdot r/2 \,[\text{m}]$

Effect of B field

 One needs to be very careful with the low momentum cutoff due to the strong B field (espicially 3T)

```
p_T \left[ \text{GeV}/c \right] = 0.3 \cdot B \left[ \text{T} \right] \cdot r/2 \left[ \text{m} \right]
```


Easier to perform low p PID (DIRC, TOF, dE/dx): 0.2 GeV paricles can reach detector ~1m

For LGAD TOF have $3\sigma \pi/K$ separation, it needs to be placed >10cm

If one want to use dE/dx (cluster counting) or TOF to cover low p, it needs to sits at a moderate R (<50cm if one want PID ~0.1 GeV, <100cm if one want PID ~0.2 GeV)

Effect of timing resolution

 TOF with better intrinsic resolution can be put closer to the interaction point → smaller area

Effect of timing resolution

 TOF with better intrinsic resolution can be put closer to the interaction point → smaller area

Effect of path length resolution

 Momentum coverage by LGAD TOF is sensitive path length uncertainty

Summary

- DIRC cannot identify particles below firing threshold or particles which can not reach it
- Complementry PID detector should be put close enough so low momentum particles can reach it
- TOF: further \rightarrow higher momentum reach; closer \rightarrow smaller area
- Results sensitive to the path length uncertainties
- Nest step: put LGAD at different radial locations and study its impact on the momentum and projecting resolution