ECCE All Si Tracker Design Optimisation

Karthik Suresh & Cristiano Fanelli July 6 2021

All Si Inner Tracker

Baseline Design Parameters

Si Vertex Detector	Radii [cms]	Length [cms]	
Layer 1	3.3	30.0	
Layer 2	5.7	30.0	

Outer Si Barrels	Radii [cms]	Length [cms]
Layer 1	21.0	54.0
Layer 2	22.68	60.0
Layer 3	39.3	105.0
Layer 4	43.3	114.0

Forward Si Disks	Z position [cms]	RMin [cms]	RMax [cms]	
Disk 1	25.0	3.18	18.48	
Disk 2	49.0	3.18	36.28	
Disk 3	73.0	3.50	43.2	
Disk 4	97.0	4.70	43.2	
Disk 5	112.0	5.90	43.2	

Common Parameters				Outer Si Barrels	Pixel [um]	Resolution [cms]		
Si Vertex		Pixel	Resolution [cms]			Z	10	0.001/sqrt(12)
Detector		um				phi	10	0.001/sqrt(12)
Z		10	0.001/s	qrt(12)	t(12) Forward Si			Pesolution
phi		10	0.001/s	qrt(12)	rt(12) Disks		Pixel [um]	[cms]
D rongo		1 20 ($2 \circ 1/2$	//2		Radial (r)	10	0.001/sqrt(12)
		1 - 30 (1 - 30 Gev/c			Phi	10	0.001/sqrt(12)
η range		0 - 3.5	GeV/c					
	1.1						Vertex Budget Barrel [1 - 2] (X/X0)	0.05 %
Magnetic Field 1.4 I E		BaBar				Barrel Budget	0.55%	
Black hole		Final La cm	yer + 2 ıs				Disk Budget (X/X0)	0.24 %

So Far

- Used the All Si Tracker design shown before as Baseline and optimised the detector design without having the outer GEM detector (at 92cms).
- Cris had shown the results of the optimisation in various places [June 12 2021 AI WG Meeting]
- Rey showed <u>results</u> with replacing the 3rd and 4th Barrel layers with Vertex layer technology (X/X0 = 0.05%).
- The plots shown from now on is for the design here

Used stand alone simulation

3rd and 4th Barrel Layers replaced with vertex technology

	Vertex Budget Barrel [1 - 4] (X/X0)	0.05 %
The Detector geometry is the same as the Baseline Design except	Barrel Budget Barrel [5 - 6] (X/X0)	0.55%
 NO GEM Barrel layers 3 and 4 are replaced with Vertex Technology 	Disk Budget (X/X0)	0.24 %

Procedure

1 M events between 0 to 0.5 in eta with p range between 1 - 30 GeV/c

- Resolutions in p, theta, dca2d along with Kalman Filtering Inefficiency is used as objective to optimise the detector design parameters
- Each of the resolutions are extracted in bins of generated momenta (p) and generated pseudo rapidity (η).
- The distributions are fit with a single gaussian so far.
- A double gaussian fit with same mean seems to fit better the distributions

Higher η range fits are better with double gaussian fits

Summary

- This study on the fit functions was made as an effort to optimise the All Silicon Inner tracker design using Al
- Fitting the resolution distributions with a double gaussian, do not have a huge impact on the resolutions themselves but on the quality of the fits (χ^2 /NDF)
- Fit results with double gaussian are more stable at higher η (pseudo rapidity).
- Fit results with double gaussian are more stable especially with lower statistics