Electron-Ion Collider in China Yuxiang Zhao (Institute of Modern Physics, Chinese Academy of Sciences) On behalf of the EicC working group ### Outline - •General introduction of the Electron-Ion Collider in China - Physics highlights - Project status - Summary #### Where we are talking about...Huizhou(惠州) in Guangdong province #### High Intensity heavy-ion Accelerator Facility (HIAF) HIAF total investment: 2.5 billion RMB # Electron Ion Collider in China, EicC # EicC white paper (arXiv: 2102.09222) Published in the *Frontiers of Physics* Journal (open access) Front. Phys. >> 2021, Vol. 16 >> Issue (6): 64701. DOI: 10.1007/s11467-021-1062-0 REPORT #### **Electron-ion collider in China** #### Now we have 46 institutes and >100 physicists Daniele P. Anderle¹, Valerio Bertone², Xu Cao^{3,4}, Lei Chang⁵, Ningbo Chang⁶, Gu Chen⁷, Xurong Chen^{3,4}, Zhuojun Chen⁸, Zhufang Cui⁹, Lingyun Dai⁸, Weitian Deng¹⁰, Minghui Ding¹¹, Xu Feng¹², Chang Gong¹², Longcheng Gui¹³, Feng-Kun Guo^{4,14}, Chengdong Han^{3,4}, Jun He¹⁵, Tie-Jiun Hou¹⁶, Hongxia Huang¹⁵, Yin Huang¹⁷, KrešImir KumeričKi¹⁸, L. P. Kaptari^{3,19}, Demin Li²⁰, Hengne Li¹, Minxiang Lii^{3,21}, Xueqian Li⁵, Yutie Liang^{3,4}, Zuotang Liang²², Chen Liu²², Chuan Liu¹², Guoming Liu¹, Jie Liu^{3,4}, Liuming Liu^{3,4}, Xiang Liu²¹, Tianbo Liu²², Xiaofeng Luo²³, Zhun Lyu²⁴, Boqiang Ma¹², Fu Ma^{3,4}, Jianping Ma^{4,14}, Yugang Ma^{4,25,26}, Lijun Mao^{3,4}, Cédric Mezrag², Hervé Moutarde², Jialun Ping¹⁵, Sixue Qin²⁷, Hang Ren^{3,4}, Craig D. Roberts⁹, Juan Rojo^{28,29}, Guodong Shen^{3,4}, Chao Shi³⁰, Qintao Song²⁰, Hao Sun³¹, Paweł Sznajder³², Enke Wang¹, Fan Wang⁹, Qian Wang¹, Rong Wang^{3,4}, Ruiru Wang^{3,4}, Taofeng Wang³³, Wei Wang³⁴, Xiaoyu Wang²⁰, Xiaoyun Wang³⁵, Jiajun Wu⁴, Xinggang Wu²⁷, Lei Xia³⁶, Bowen Xiao^{23,37}, Guoqing Xiao^{3,4}, Ju-Jun Xie^{3,4}, Yaping Xie^{3,4}, Hongxi Xing¹, Hushan Xu^{3,4}, Nu Xu^{3,4,23}, Shusheng Xu³⁸, Mengshi Yan¹², Wenbiao Yan³⁶, Wencheng Yan²⁰, Xinhu Yan³⁹, Jiancheng Yang^{3,4}, Yi-Bo Yang^{4,14}, Zhi Yang⁴⁰, Deliang Yao⁸, Zhihong Ye⁴¹, Peilin Yin³⁸, C.-P. Yuan⁴², Wenlong Zhan^{3,4}, Jianhui Zhang⁴³, Jianlong Zhang²⁴, Jian Zhou²², Xiang Zhou⁴⁵, Xiaorong Zhou³⁶, Bingsong Zou^{4,14}, Liping Zou^{3,4} # EicC Accelerator complex layout ### EicC Specs - EicC covers the kinematic region between JLab experiments and US-EIC - EicC complements the ongoing scientific programs at JLab and future EIC project - EicC focuses on moderate x and sea-quark region ### Outline - General introduction of the Electron-Ion Collider in China - Physics highlights - Project status - Summary # Highlighted physics topics - Spin structure of the nucleon: 1D, 3D - polarized electron + polarized proton/light nuclei - Partonic structure of nuclei and the parton interaction with the nuclear environment - ➤unpolarized electron + unpolarized various nuclei Exotic states with c/cbar, b/bbar (BESIII community in China) Origin of the proton mass study via heavy quarkonium near-threshold production ### Spin structure of the nucleon-helicity distribution A NLO impact study See arXiv:2103.10276 #### **EicC** white paper **EIC Yellow Report** ## Spin structure of the nucleon-TMDs u/d Sivers EicC vs world data #### LO analysis #### EicC SIDS data: - \triangleright Pion(+/-), Kaon(+/-) - > ep: 3.5 GeV X 20 GeV - ➤ eHe-3: 3.5 GeV X 40 GeV - ➤ Pol.: e(80%), p(70%), He-3(70%) - Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹ EicC, precise measurements. **Green: Current accuracy** Red: stat. error only Blue: sys. Error included sea quark Sivers function dynamically generated via Spin dependent odderon leads to a unique predication for s-quark: quark and anitquark Sivers functions flip sign H. Dong, D. X. Zheng, J. Zhou, 2018 # Spin structure of the nucleon-GPDs Polarized beam, unpolarized target (SSA) $$A_{LU}^{\sin\phi} \propto \frac{y\sqrt{1-y}}{2-2y-y^2} \sqrt{\frac{-t}{y^2Q^2}} \times x_B Im \left[F_1 \mathcal{H} + \xi (F_1+F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} + \ldots \right] (x_B,t,Q^2),$$ Unpolarized beam, longitudinal target (lTSA) $$A_{UL}^{\sin\phi} \propto \frac{\sqrt{1-y}}{2-y} \sqrt{\frac{-t}{y^2 Q^2}} \times x_B Im \left[F_1 \widetilde{\mathcal{H}} + x_B (F_1 + F_2) (\widetilde{\mathcal{H}} + \frac{x_B}{2\mathcal{E}}) - x_B k F_2 \widetilde{\mathcal{E}} + \ldots \right] (x_B, t, Q^2),$$ Unpolarized beam, transverse target (tTSA) $$\underline{A_{UT}^{\sin(\phi-\phi_S)\cos\phi}} \propto \frac{\sqrt{1-y}}{2-y} \frac{-t}{2yM_NQ} \times x_B Im \left[F_1 \mathcal{H} + \xi(F_1 + F_2)(\widetilde{\mathcal{H}} + \frac{x_B}{2}\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \ldots \right] (x_B, t, Q^2),$$ Polarized beam, longitudinal target (DSA) $$A_{LL} \propto (A + B\cos\phi)\,Re\left[F_1\mathcal{H} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) + \ldots\right],$$ The extraction of CFF with neural network methods [Kumericki, 19] Only with this azimuthal angular modulation # Nuclear PDFs study with ion beam With only a few hours of running # Proton mass study Mass decomposition [Ji, 95] $$M = \underbrace{M_q + M_m}_{\text{Quark}} + \underbrace{M_g + M_a}_{\text{Gluon}}$$ M_q : quark energy M_m : quark mass (condensate) M_g : gluon energy M_a : trace anomaly - M_q and M_g constrained by PDFs. - M_m via πN low energy scattering. - M_a via threshold production of J/Ψ $(8.2 \text{ GeV}; \text{JLab}) \text{ and } \Upsilon (12 \text{ GeV});$ - Threshold requires low CoM energy. (Low y at EIC). - Complementarity between EicC (and EIC) and lattice. Guideline Lattice calculation by Yang et al, 2018 ### Outline - General introduction of the Electron-Ion Collider in China - Physics highlights - Project status - Summary #### EicC detector considerations #### Detector R&Ds Clean rooms of ISO6 and ISO7 (in total of 200 m²) for detector assembling - ALICE style ITS2 MAPS pixel detector - TAB 1 2 3 4 5 6 7 14 13 12 11 10 9 8 - 25cm x 25 cm Micromegas mass production - R&D on 0.4m x 0.4m 1m x 0.5 m GEM (self-stretching) #### **sTGC** detector ~55cm * 55cm pentagon Shashlyk and W-powder+ScFi EMCal **DIRC** prototype # We are here ### Timeline | СҮ | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | | |----|-------------------|----------------------|----|-------------|----|----|----|---|----|----|----|----|-------------|----|----|----|----|----|--| | | 5-year-plan | | | 5-year-plan | | | | 5-year-plan | | | | | 5-year-plan | | | | | | | | | | | HI | AF | | | | | | | | | | | | | | | | | | Fi _o C | | | R&D | | | | | | | | | | | | | | | | | | EicC | | | | | | | √s ~ 17GeV, 2x10 ³³ /s/cm ² | | | | | | | | | | | | | | | R&D and construction | In operation | | | | | | | | | | | | | | | | | | # Summary - EicC is briefly introduced - EicC focuses on sea-quark/gluon related study at moderate/large-x region - EicC can help to tackle the issue of the trace anomaly contribution to the proton mass at the Upsilon threshold - More physics topics are under study and development - Full Geant4 simulation and detector R&Ds are ongoing EicC complements EIC physics program at higher energy