AMBER@CERN A new QCD facility

Institut für Kernphysik, Universität Mainz

PSQ@EIC, 19.-23. July 2021

AMBER history

Work on physics program for new experiments at M2 beamline started >10 years ago

 Lol submitted in January 2019 (>270 authors)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Jan	Letter of Intent:
22	New QCD facility at the M2 beam line of the CERN SPS
	COMP SS++ / MBER ¹

- Proposal for stage 1 submitted in October 2019 (CERN-SPSC-2019-022)
- currently 190 physicists from 40 institutions
- Approved by research board in December 2020 as NA66
 - E.M. Kabuß

accompanied by a series of workshops:

 5 workshops on "Perceiving the Emergence of Hadron Mass"

 Preparation of proposal for stage 2 ongoing

What is the origin of mass of all the visible matter in the universe?

- Spin 0
- 2 light valence quarks

- $M_K \sim 490 MeV$
- Spin 0
- 1 light and 1 "heavy" valence quarks

- $M_p \sim 940 \text{MeV}$
- Spin 1/2
- 3 light valence quarks

Higgs generated masses:

 $M_{u+d} \sim 7 \,\, {
m MeV} \qquad M_{u+s} \sim 100 \,\, {
m MeV} \qquad M_{u+u+d} \sim 10 \,\, {
m MeV}$

Higgs mechanism: generates small fraction of mass of visible matter does not explain large proton mass or small pion mass

Where does the rest come from?

 \longrightarrow QCD in Standard Model

E.M. Kabuß

Emergence of hadron mass

Dynamical mass generation in continuum QCD

PRD D26 (1981) 1453

- massless gluon generates dressed gluons due to self interaction
- result: generation of mass, large at infrared scales

- quarks emit und absorb gluons
- acquire mass in infrared region

E.M. Kabuß

Comparison of lattice and continuum QCD calculation with experimental data

requires data for:

- quark and gluon PDFs for mesons
- hadron radii and polarisabilities (confinement)
- excitation spectrum of mesons

AMBER stage 1: using existing M2 beam line with high energy μ , π and p beams

- 1. Proton charge radius measurement
 - \longrightarrow elastic scattering of muons off protons using an active high pressure hydrogen target
- 2. Antiproton production input for dark matter searches e.g. AMS
 - \longrightarrow interaction of protons with ${}^{4}\mathrm{He}$ cross section measurement
- 3. Pion induced Drell-Yan and charmonium production
 - \longrightarrow interaction of pions with nuclear target muon pair production will be used to extract pion PDFs

approved since Dec. 2020, PRM pilot run in October 2021

E.M. Kabuß

RF separated hadron beam

AMBER stage 2: upgrade of M2 beam line to RF-separated hadron beam

composition of standard hadron beam: negative beam: mainly π^- postive beam: mainly p

enrich kaon and antiprotons by RF separation:

- deflection with 2 cavities
- length should increase with p² for given f
- limits beam momentum
 - $\sim 80~\text{GeV}$ for kaons
 - $\sim 110~\text{GeV}$ for \bar{p}

E.M. Kabuß

Physics program cont.

AMBER stage 2: proposed measurements

- Kaon induced Drell-Yan and charmonium production

 \longrightarrow valence/sea separation using K^+ and K^- beams ratio of kaon and pion u-quark PDF gluon PDF

- Prompt photon productions
 - \longrightarrow gluon distributions of mesons
- Primakoff reactions with ${\sf K}/\pi$ beams
- Kaon induced spectroscopy
 - \longrightarrow strange meson spectrum
- Meson scattering on H
 - \rightarrow meson charge radii
 - E.M. Kabuß

Proton charge radius puzzle

In 2010 discrepancy in r_p results from laser spectroscopy and scattering experiments

new: scattering experiments with muons **MUSE** at PSI with low energy μ **AMBER** at CERN with high energy μ

E.M. Kabuß

Experimental method

New method: measure proton recoil E_p , Θ_p (instead of lepton E'_l and Θ_l)

- active hydrogen target: high pressure hydrogen TPC

planned for PRES at MAMI ($E_e = 720 \text{ MeV}$) AMBER ($E_\mu = 50 - 100 \text{ GeV}$)

- Si-pixel trackers precise measurement of $\boldsymbol{\mu}$ scattering angle
- scint. fibre detectors for timing and triggering
- correlation of variables allows for suppression of backgrounds

E.M. Kabuß

Planned setup

- TPC with up to 20 bar, 160 cm target length, anodes plates with azimuthal segmentation
- electromagnetic calorimeter to measure radiative photons
- muon identification system
- continuously running DAQ

E.M. Kabuß

using about 200 days of running time (plus control measurements)

Dark matter search in cosmic rays

Antiproton production

Measurement of p-He interactions

- using proton beam of 50 280 GeV/c
- AMBER spectrometer to reconstruct inelastic events
- RICH detector to identify antiprotons
- \longrightarrow cross section determination
- complementary to LHCb measurement at 7 TeV
- pilot run planned for 2022 (using infrastructure of COMPASS polarised target)

expected AMBER measurement

E.M. Kabuß

Pion structure

- different results for pion PDFs from different groups
- not enough data to constrain all PDFs
- measurement planned using: π⁺ and π⁻ beams with isoscalar target
- $\begin{array}{ll} \bullet \quad \mbox{yields two linear combinations:} \\ -\sigma^{\pi^+ D} + \sigma^{\pi^- D} & \mbox{sensitive to valence only} \\ 4\sigma^{\pi^+ D} \sigma^{\pi^- D} & \mbox{sensitive to sea} \end{array}$

E.M. Kabuß

Drell-Yan setup

First steps

PRM test in 2018

- TPC from Mainz experiment installed behind COMPASS DY setup
- use of decay muons
- correlate TPC signals with SciFi and Si detector signals

- scheduled after COMPASS deuteron DIS data taking
- recoil proton detection in real muon beam environment (position before COMPASS setup)
- ▶ IKAR TPC from GSI will be used (half length of AMBER TPC)
- test of new continous readout scheme and new tracking station

E.M. Kabuß

Pilotrun 2021

IKAR TPC

- 2 drift cells with 40cm length
- identical anode structure to final TPC
- smaller diameter
- operation with max. 10 bar

E.M. Kabuß

Tracking station

- houses SciFi and Si-pixel detectors
- small distance between detectors
- precise positioning
- compatible with He bags for beamline

- ▶ a new QCD facility will be set up at the CERN M2 beamline
- measurements planned covering the full accessible Q² range
- stage 1 with conventional muon and hadron beams is starting this year with the proton radius pilot run
- > proposal for stage 2 with RF separated hadron beam is being prepared
- new ideas and new collaborators are welcome