Glue Imaging in Production of Vector Mesons $(J / \Psi, \phi \cdots)$

Bo-Wen Xiao

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen

2nd Precision Studies on QCD at EIC

An analogy to Fraunhofer Diffaction in Optics

[QCD at high energy, Kovchegov and Levin, 12]

■ Treat the hadron target in DIS as a black disk. [Joseph von Fraunhofer, 1821]
■ Similar pattern in optics $\left(\theta_{i}^{\min } \sim 1 /(k R)\right)$ and high energy QCD $t_{i} \sim \frac{1}{R^{2}}$.
■ Two difference: 1. σ sensitive to gluon distribution; 2. Breakup of the target.

- This motivates us to use diffractive scattering to study gluon spatial distribution.

Gluon GPDs and DVMP processes

For exclusive/diffractive processes with $V=J / \Psi, \phi \cdots$

$$
\gamma^{*}(q)+p / A(p) \rightarrow V(q-\Delta)+p / A(p+\Delta)
$$

- The latter diagram is dominant at small- x (high energy) limit.

■ Widely studied at small-x [Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94; Kowalski, Teaney, 03; Kowalski, L. Motyka, Watt, 06, Watt, Kowalski, 08; Kowalski, Caldwell, 10; Berger, Stasto, 13; Rezaeian, Schmidt, 13]...

■ Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H. Mantysaari, 11; Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15; T. Lappi, Mantysaari, Schenke, 16]...; Review by [Mantysaari, 20]
■ DVMP at NLO. [Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16]

Wigner distribution

Wigner distributions [Ji, 03; Belitsky, Ji, Yuan, 2004] ingeniously encode all quantum information of how partons are distributed inside hadrons.

■ Quasi-probability distribution; Not positive definite. [F. Yuan's talk]
■ GPDs encode the parton spatial distributions.

The exact connection between dipole amplitude and Wigner distribution
[Hatta, Xiao, Yuan, 16] Def. of gluon Wigner distribution:

$$
\begin{aligned}
x W_{g}^{T}\left(x, \vec{q}_{\perp} ; \vec{b}_{\perp}\right) & =\int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3} P^{+}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i x P^{+} \xi^{-}-i q_{\perp} \cdot \xi_{\perp}} \\
& \times\left\langle P+\frac{\Delta_{\perp}}{2}\right| F^{+i}\left(\vec{b}_{\perp}+\frac{\xi}{2}\right) F^{+i}\left(\vec{b}_{\perp}-\frac{\xi}{2}\right)\left|P-\frac{\Delta_{\perp}}{2}\right\rangle
\end{aligned}
$$

Define GTMD [Meissner, A. Metz and M. Schlegel, 09]

$$
x G\left(x, q_{\perp}, \Delta_{\perp}\right) \equiv \int d^{2} b_{\perp} e^{-i \Delta \cdot b_{\perp}} x W_{g}^{T}\left(x, \vec{q}_{\perp} ; \vec{b}_{\perp}\right)
$$

- With dipole-like gauge link, one finds

$$
\begin{aligned}
x G_{\mathrm{DP}}\left(x, q_{\perp}, \Delta_{\perp}\right) & =\frac{2 N_{c}}{\alpha_{s}} \int \frac{d^{2} R_{\perp} d^{2} R_{\perp}^{\prime}}{(2 \pi)^{4}} e^{i q_{\perp} \cdot\left(R_{\perp}-R_{\perp}^{\prime}\right)+i \frac{\Delta_{\perp}}{2} \cdot\left(R_{\perp}+R_{\perp}^{\prime}\right)} \\
& \times\left(\nabla_{R_{\perp}} \cdot \nabla_{R_{\perp}^{\prime}}\right) \frac{1}{N_{c}}\left\langle\operatorname{Tr}\left[U\left(R_{\perp}\right) U^{\dagger}\left(R_{\perp}^{\prime}\right)\right]\right\rangle_{x}
\end{aligned}
$$

■ Relation to TMDs and GPDs. Small- x tells us more information about them.

Scattering amplitude

■ At small-x, the lifetime of $q \bar{q}$ fluctuation $\tau_{f} \sim \frac{q^{+}}{Q^{2}}+\frac{q^{+}}{M_{V}^{2}} \gg \tau_{\text {int }}$ with $\tau_{\text {int }} \sim R / \gamma$.

- Factorize the amplitude into three pieces in coordinate space:

$$
\begin{aligned}
\mathcal{A}\left(\Delta_{\perp}\right) \sim & \int d^{2} r_{\perp} d^{2} b_{\perp} e^{i b_{\perp} \cdot \Delta_{\perp}} \int_{0}^{1} d z \Psi_{\gamma^{*}}\left(z, r_{\perp}\right) \Psi_{V}^{*}\left(z, r_{\perp}\right) \\
& \times\left\{1-\frac{1}{N_{c}} \operatorname{Tr}\left[U\left(b_{\perp}+z r_{\perp}\right) U^{\dagger}\left(b_{\perp}-(1-z) r_{\perp}\right)\right]\right\}
\end{aligned}
$$

■ I: $\gamma^{*} \rightarrow q \bar{q}$ splitting; II: $q \bar{q}$ scattering; III: CC of $V \rightarrow q \bar{q}$ splitting.

Relation between gluon GPDs and dipole scattering amplitude

[Hatta, Xiao, Yuan, 17] gluon GPDs with asymmetric dipole for arbitrary z

- Dipole scattering amplitude $S_{x}=\left\langle\frac{1}{N_{c}} \operatorname{Tr}\left[U\left(x_{1 \perp}\right) U^{\dagger}\left(x_{2 \perp}\right)\right]\right\rangle_{x}$ defines GTMD:

$$
\mathcal{F}_{x}\left(\tilde{q}_{\perp}, \Delta_{\perp}\right)=\frac{1}{(2 \pi)^{4}} \int d^{2} x_{1 \perp} d^{2} x_{2 \perp} e^{i k_{1} \perp x_{1 \perp}-i k_{2 \perp} \cdot x_{2} \perp} S_{x}\left(x_{1 \perp}, x_{2 \perp}\right)
$$

with $k_{1 \perp} \equiv \tilde{q}_{\perp}+z \Delta_{\perp}$ and $k_{2 \perp} \equiv \tilde{q}_{\perp}-(1-z) \Delta_{\perp}$.

- Symmetric dipole definition with shifts of coordinate and momentum

$$
F_{x}\left(q_{\perp}, \Delta_{\perp}\right)=\int \frac{d^{2} r_{\perp} d^{2} b_{\perp}}{(2 \pi)^{4}} e^{i b_{\perp} \cdot \Delta_{\perp}+i r_{\perp} \cdot q_{\perp}} S_{x}\left(b_{\perp}+\frac{r_{\perp}}{2}, b_{\perp}-\frac{r_{\perp}}{2}\right)
$$

Dipole scattering amplitude

Several properties of the scattering amplitude:
■ $S_{x}=\left\langle\frac{1}{N_{c}} \operatorname{Tr}\left[U\left(b_{\perp}+\frac{r_{\perp}}{2}\right) U^{\dagger}\left(b_{\perp}-\frac{r_{\perp}}{2}\right)\right]\right\rangle_{x}$
■ Due to the Pomeron exchange, S_{x} is predominantly real in small- x.

- $S_{x}=S_{x}^{*} \Rightarrow S_{x}$ can only depend on $b_{\perp}^{2}, r_{\perp}^{2}$ and $\left(r_{\perp} \cdot b_{\perp}\right)^{2 n}$.
- Double Fourier transform:

$$
F_{x}\left(q_{\perp}, \Delta_{\perp}\right)=\int \frac{d^{2} r_{\perp} d^{2} b_{\perp}}{(2 \pi)^{4}} e^{i b_{\perp} \cdot \Delta_{\perp}+i r_{\perp} \cdot q_{\perp}} S_{x}\left(b_{\perp}+\frac{r_{\perp}}{2}, b_{\perp}-\frac{r_{\perp}}{2}\right)
$$

- Angular dependence after double Fourier transform

$$
F_{x}\left(q_{\perp}, \Delta_{\perp}\right)=F_{0}\left(\left|q_{\perp}\right|,\left|\Delta_{\perp}\right|\right)+2 \cos 2\left(\phi_{q_{\perp}}-\phi_{\Delta_{\perp}}\right) F_{\epsilon}\left(\left|q_{\perp}\right|,\left|\Delta_{\perp}\right|\right)+\cdots
$$

■ Non-trivial angular correlation between Δ_{\perp} and q_{\perp} due to small- x dynamics.

Explicit expressions for gluon GPDs

$$
\begin{aligned}
& \frac{1}{P^{+}} \int \frac{d \zeta^{-}}{2 \pi} e^{i x P^{+} \zeta^{-}}\left\langle p^{\prime}\right| F^{+i}(-\zeta / 2) F^{+j}(\zeta / 2)|p\rangle \\
& \quad=\frac{\delta^{i j}}{2} x H_{g}\left(x, \Delta_{\perp}\right)+\frac{x E_{T g}\left(x, \Delta_{\perp}\right)}{2 M^{2}}\left(\Delta_{\perp}^{i} \Delta_{\perp}^{j}-\frac{\delta^{i j} \Delta_{\perp}^{2}}{2}\right)+\cdots \\
& \quad \approx \frac{2 N_{c}}{\alpha_{s}} \int d^{2} q_{\perp}\left(q_{\perp}^{i}-\frac{\Delta_{\perp}^{i}}{2}\right)\left(q_{\perp}^{j}+\frac{\Delta_{\perp}^{j}}{2}\right) F\left(q_{\perp}, \Delta_{\perp}\right)
\end{aligned}
$$

Comparing coefficients gives [Hatta, Xiao, Yuan, 17]
Helicity conserved: $\quad x H_{g}\left(x, \Delta_{\perp}\right)=\frac{2 N_{c}}{\alpha_{s}} \int d^{2} q_{\perp} q_{\perp}^{2} F_{0}$
Helicity flipping: $\quad x E_{T_{g}}\left(x, \Delta_{\perp}\right)=\frac{4 N_{c} M^{2}}{\alpha_{s} \Delta_{\perp}^{2}} \int d^{2} q_{\perp} q_{\perp}^{2} F_{\epsilon}$

Probing gluon GPD at small- x

DVCS[Hatta, Xiao, Yuan, 17] and DVMP [Mantysaari, Roy, Salazar, Schenke, 20]

$$
\frac{d \sigma_{T T}}{d x_{B} d Q^{2} d^{2} \Delta_{\perp}}=\frac{\alpha_{e m}^{3}}{\pi x_{B j} Q^{2}}\left\{\left(1-y+\frac{y^{2}}{2}\right)\left(\mathcal{A}_{0}^{2}+\mathcal{A}_{2}^{2}\right)+(1-y) 2 \mathcal{A}_{0} \mathcal{A}_{2} \cos \left(2 \phi_{\Delta l}\right)\right\}
$$

- \mathcal{A}_{0} : helicity conserved amplitude; \mathcal{A}_{2} : helicity-flip amplitude
- Use the lepton plane as a reference, one can measure angular correlations.
- $\cos 2 \phi_{\Delta l}$ correlation is sensitive to the helicity-flip gluon GPD $x E_{T g}$.

Helicity conserved: $\quad x H_{g}\left(x, \Delta_{\perp}\right)=\frac{2 N_{c}}{\alpha_{s}} \int d^{2} q_{\perp} q_{\perp}^{2} F_{0}$
Helicity flipping: $\quad x E_{T_{g}}\left(x, \Delta_{\perp}\right)=\frac{4 N_{c} M^{2}}{\alpha_{s} \Delta_{\perp}^{2}} \int d^{2} q_{\perp} q_{\perp}^{2} F_{\epsilon}$

Dipole model and HERA data

- [Kowalski, Teaney, 03; Kowalski, Motyka, Watt, 06]
$11 / 15$

Dipole model and HERA data

- [Kowalski, Motyka, Watt, 06]

Diffractive vector meson production

- Incoherent DVMP is sensitive to the proton fluctuating shape. (Variance) [Mantysaari, Schenke, 16; Mantysaari, Roy, Salazar, Schenke, 20]

Good-Walker: measure of fluctuation $\left.\left.\frac{d \sigma_{\text {incoh }}}{d \hat{t}} \sim\langle | \mathcal{A}\right|^{2}\right\rangle-|\langle\mathcal{A}\rangle|^{2}$

Spatial Imaging at EIC

■ Ultimate goal: spatial distributions (via FT). [EIC white paper, 1212.1701]

Summary

■ Gluon spatial imaging through DVMP.
■ Probing non-trivial angular correlation and helicity-flip GPD.
■ Study of fluctuations via incoherent diffractive productions.
■ Another interesting topic: Heavy quarkonium near threshold and proton mass. [D. Kharzeev, 96; ...; Hatta, Yang, 18; Kou, Wang, Chen, 21; Guo, Ji, Liu, 21; Sun, Tong, Yuan, $21 ; \ldots]$ Small- x picture no longer applies. Paradigm shift!

