
Introduction
Deeply Virtual Meson Production (DVMP) and Gluon GPDs

Glue Imaging in Production of Vector Mesons (J/Ψ, φ · · · )

Bo-Wen Xiao

School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen

2nd Precision Studies on QCD at EIC

1 / 15



Introduction
Deeply Virtual Meson Production (DVMP) and Gluon GPDs

An analogy to Fraunhofer Diffaction in Optics

[QCD at high energy, Kovchegov and Levin, 12]

Treat the hadron target in DIS as a black disk. [Joseph von Fraunhofer, 1821]

Similar pattern in optics (θmin
i ∼ 1/(kR)) and high energy QCD ti ∼ 1

R2 .

Two difference: 1. σ sensitive to gluon distribution; 2. Breakup of the target.

This motivates us to use diffractive scattering to study gluon spatial distribution.
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Gluon GPDs and DVMP processes

For exclusive/diffractive processes with V = J/Ψ, φ · · ·

γ∗(q) + p/A(p)→ V(q−∆) + p/A(p + ∆)

The latter diagram is dominant at small-x (high energy) limit.

Widely studied at small-x [Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94;
Kowalski, Teaney, 03; Kowalski, L. Motyka, Watt, 06, Watt, Kowalski, 08;
Kowalski, Caldwell, 10; Berger, Stasto, 13; Rezaeian, Schmidt, 13]...

Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H.
Mantysaari, 11; Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15; T.
Lappi, Mantysaari, Schenke, 16]...; Review by [Mantysaari, 20]

DVMP at NLO. [Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16]
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Wigner distribution

Wigner distributions [Ji, 03; Belitsky, Ji, Yuan, 2004] ingeniously encode all
quantum information of how partons are distributed inside hadrons.

Figure 2.2: Connections between di↵erent quantities describing the distribution of partons
inside the proton. The functions given here are for unpolarized partons in an unpolarized proton;
analogous relations hold for polarized quantities.

tum, and specific TMDs and GPDs quan-
tify the orbital angular momentum carried
by partons in di↵erent ways.

The theoretical framework we have
sketched is valid over a wide range of mo-
mentum fractions x, connecting in particular
the region of valence quarks with the one of
gluons and the quark sea. While the present
chapter is focused on the nucleon, the con-
cept of parton distributions is well adapted
to study the dynamics of partons in nuclei, as
we will see in Sec. 3.3. For the regime of small
x, which is probed in collisions at the highest
energies, a di↵erent theoretical description is
at our disposal. Rather than parton distribu-
tions, a basic quantity in this approach is the
amplitude for the scattering of a color dipole
on a proton or a nucleus. The joint distri-
bution of gluons in x and in kT or bT can
be derived from this dipole amplitude. This
high-energy approach is essential for address-
ing the physics of high parton densities and
of parton saturation, as discussed in Sec. 3.2.
On the other hand, in a regime of moder-
ate x, around 10�3 for the proton and higher

for heavy nuclei, the theoretical descriptions
based on either parton distributions or color
dipoles are both applicable and can be re-
lated to each other. This will provide us with
valuable flexibility for interpreting data in a
wide kinematic regime.

The following sections highlight the
physics opportunities in measuring PDFs,
TMDs and GPDs to map out the quark-
gluon structure of the proton at the EIC.
An essential feature throughout will be the
broad reach of the EIC in the kinematic
plane of the Bjorken variable x (see the Side-
bar on page 18) and the invariant momentum
transfer Q2 to the electron. While x deter-
mines the momentum fraction of the partons
probed, Q2 specifies the scale at which the
partons are resolved. Wide coverage in x
is hence essential for going from the valence
quark regime deep into the region of gluons
and sea quarks, whereas a large lever arm in
Q2 is the key for unraveling the information
contained in the scale evolution of parton dis-
tributions.

17

bT

kT
xp

Quasi-probability distribution; Not positive definite. [F. Yuan’s talk]

GPDs encode the parton spatial distributions.
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The exact connection between dipole amplitude and Wigner distribution

[Hatta, Xiao, Yuan, 16] Def. of gluon Wigner distribution:

xWT
g (x,~q⊥;~b⊥) =

∫
dξ−d2ξ⊥
(2π)3P+

∫
d2∆⊥
(2π)2 e−ixP+ξ−−iq⊥·ξ⊥

×
〈

P +
∆⊥

2

∣∣∣∣F+i
(
~b⊥ +

ξ

2

)
F+i

(
~b⊥ −

ξ

2

)∣∣∣∣P− ∆⊥
2

〉
,

Define GTMD [Meissner, A. Metz and M. Schlegel, 09]

xG(x, q⊥,∆⊥) ≡
∫

d2b⊥e−i∆·b⊥xWT
g (x,~q⊥;~b⊥).

With dipole-like gauge link, one finds

xGDP(x, q⊥,∆⊥) =
2Nc

αs

∫
d2R⊥d2R′⊥

(2π)4 eiq⊥·(R⊥−R′⊥)+i
∆⊥

2 ·(R⊥+R′⊥)

×
(
∇R⊥ · ∇R′⊥

) 1
Nc

〈
Tr
[
U (R⊥) U†

(
R′⊥
)]〉

x
.

Relation to TMDs and GPDs. Small-x tells us more information about them.
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Scattering amplitude

that from the helicity-flip gluon GPD in the collinear
framework. Meanwhile, for the azimuthally symmetric
cross section, the dipole formalism leads to divergence
in the collinear limit. This can be interpreted as the OðαsÞ
contribution to the quark GPD in the collinear framework,
according to the relation between the quark GPD and the
gluon GPD at small x. These results establish a complete
consistency between the dipole formalism and the collinear
factorization framework.
The rest of the paper is organized as follows. In Sec. II,

we establish the connection between the gluon GPDs at
small x and the gluon Wigner distributions. In particular,
the so-called elliptic gluon Wigner distribution will con-
tribute to the helicity-flip gluon GPD. In Sec. III, we
calculate the DVCS amplitude in the dipole framework in
coordinate space and derive the cos 2ϕ correlation. In
Sec. IV, we perform the calculations in momentum space
and demonstrate the consistency with the coordinate space
derivations in Sec. III. The comparisons to the collinear
factorization results will be made in Secs. III and IVand the
Appendix. In Sec. V, we compute the contribution from the
longitudinally polarized virtual photon and find the cosϕ
correlation. Finally, we summarize our paper in Sec. VI.

II. DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to
calculate the DVCS amplitude at small x, namely, the
dipole S-matrix. We shall clarify the relation between the
gluon GPDs and the dipole S-matrix and show that the latter
provides an efficient description of the DVCS amplitude
which is free of collinear divergences.
In the dipole framework, the DVCS amplitude is

represented by the diagram in Fig. 2 in coordinate space
(left) and in momentum space (right). We work in a frame
in which the virtual photon and the proton are collinear,
with the proton moving fast in the positive z-direction.
In coordinate space, we fix the transverse coordinates of
the quark and antiquark to be x1⊥ ¼ b⊥ þ ð1 − zÞr⊥ and
x2⊥ ¼ b⊥ − zr⊥, respectively, with z defined as the longi-
tudinal momentum fraction of the quark with respect to the
incoming virtual photon. The “center of mass” of the qq̄
system coincides with the virtual photon coordinate
zx1⊥ þ ð1 − zÞx2⊥ ¼ b⊥. The size of the qq̄ system is

r⊥ ¼ x1⊥ − x2⊥. In this setup, the forward S-matrix for the
qq̄ pair scattering off the target reads

Sxðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥Þ

≡
!

1

Nc
Tr½Uðb⊥ þ ð1 − zÞr⊥ÞU†ðb⊥ − zr⊥Þ&

"

x
; ð3Þ

where x is the relevant momentum fraction of gluons in
the target. In DVCS and in the small-x limit, it is related
to the Bjorken variable xBj as x ≈

xBj
2 , which is also the same

as the skewness parameter ξ (defined below). U is the
Wilson line

Uðx⊥Þ ¼ P exp
#
−ig

Z
∞

−∞
dx−Aþðx−; x⊥Þ

$
; ð4Þ

which represents the eikonal propagation of the quark. The
brackets h…i denote the off-forward proton matrix element
hp0j…jpi
hpjpi with p0 ¼ pþ Δ. In momentum space, we define

F xð ~q⊥;Δ⊥;zÞ

≡
Z

d2r⊥d2b⊥
ð2πÞ4

eiΔ⊥·b⊥þi ~q⊥·r⊥Sxðb⊥þð1−zÞr⊥;b⊥−zr⊥Þ

¼
Z

d2r⊥d2b0⊥
ð2πÞ4

eiΔ⊥·b0⊥þi ~q⊥·r⊥e−iδ⊥·r⊥Sx

#
b0⊥þ

r⊥
2
;b0⊥−

r⊥
2

$

¼Fxðq⊥≡ ~q⊥−δ⊥;Δ⊥Þ; ð5Þ

where δ⊥ ≡ 1−2z
2 Δ⊥ and

Fxðq⊥;Δ⊥Þ ¼
Z

d2r⊥d2b⊥
ð2πÞ4

eib⊥·Δ⊥þir⊥·q⊥

× Sx

#
b⊥ þ r⊥

2
; b⊥ −

r⊥
2

$
: ð6Þ

In momentum space, we can also write F x ¼
1

ð2πÞ4
R
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sxðx1⊥; x2⊥Þ with k1⊥ ≡

~q⊥ þ zΔ⊥ and k2⊥ ≡ ~q⊥ − ð1 − zÞΔ⊥ conjugate to x1⊥ and
x2⊥, respectively. The directions of the transverse momenta
flow of exchanged gluons are labeled in Fig. 2. Following
Ref. [16], we decompose F into the angular independent
and “elliptic” parts

FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude in momentum space.

YOSHITAKA HATTA, BO-WEN XIAO, and FENG YUAN PHYSICAL REVIEW D 95, 114026 (2017)

114026-2

At small-x, the lifetime of qq̄ fluctuation τf ∼ q+

Q2 + q+

M2
V
� τint with τint ∼ R/γ.

Factorize the amplitude into three pieces in coordinate space:

A(∆⊥) ∼
∫

d2r⊥d2b⊥eib⊥·∆⊥
∫ 1

0
dzΨγ∗(z, r⊥)Ψ∗V(z, r⊥)

×
{

1− 1
Nc

Tr
[
U(b⊥ + zr⊥)U†(b⊥ − (1− z)r⊥)

]}
.

I: γ∗ → qq̄ splitting; II: qq̄ scattering; III: CC of V → qq̄ splitting.
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Relation between gluon GPDs and dipole scattering amplitude

that from the helicity-flip gluon GPD in the collinear
framework. Meanwhile, for the azimuthally symmetric
cross section, the dipole formalism leads to divergence
in the collinear limit. This can be interpreted as the OðαsÞ
contribution to the quark GPD in the collinear framework,
according to the relation between the quark GPD and the
gluon GPD at small x. These results establish a complete
consistency between the dipole formalism and the collinear
factorization framework.
The rest of the paper is organized as follows. In Sec. II,

we establish the connection between the gluon GPDs at
small x and the gluon Wigner distributions. In particular,
the so-called elliptic gluon Wigner distribution will con-
tribute to the helicity-flip gluon GPD. In Sec. III, we
calculate the DVCS amplitude in the dipole framework in
coordinate space and derive the cos 2ϕ correlation. In
Sec. IV, we perform the calculations in momentum space
and demonstrate the consistency with the coordinate space
derivations in Sec. III. The comparisons to the collinear
factorization results will be made in Secs. III and IVand the
Appendix. In Sec. V, we compute the contribution from the
longitudinally polarized virtual photon and find the cosϕ
correlation. Finally, we summarize our paper in Sec. VI.

II. DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to
calculate the DVCS amplitude at small x, namely, the
dipole S-matrix. We shall clarify the relation between the
gluon GPDs and the dipole S-matrix and show that the latter
provides an efficient description of the DVCS amplitude
which is free of collinear divergences.
In the dipole framework, the DVCS amplitude is

represented by the diagram in Fig. 2 in coordinate space
(left) and in momentum space (right). We work in a frame
in which the virtual photon and the proton are collinear,
with the proton moving fast in the positive z-direction.
In coordinate space, we fix the transverse coordinates of
the quark and antiquark to be x1⊥ ¼ b⊥ þ ð1 − zÞr⊥ and
x2⊥ ¼ b⊥ − zr⊥, respectively, with z defined as the longi-
tudinal momentum fraction of the quark with respect to the
incoming virtual photon. The “center of mass” of the qq̄
system coincides with the virtual photon coordinate
zx1⊥ þ ð1 − zÞx2⊥ ¼ b⊥. The size of the qq̄ system is

r⊥ ¼ x1⊥ − x2⊥. In this setup, the forward S-matrix for the
qq̄ pair scattering off the target reads

Sxðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥Þ

≡
!

1

Nc
Tr½Uðb⊥ þ ð1 − zÞr⊥ÞU†ðb⊥ − zr⊥Þ&

"

x
; ð3Þ

where x is the relevant momentum fraction of gluons in
the target. In DVCS and in the small-x limit, it is related
to the Bjorken variable xBj as x ≈

xBj
2 , which is also the same

as the skewness parameter ξ (defined below). U is the
Wilson line

Uðx⊥Þ ¼ P exp
#
−ig

Z
∞

−∞
dx−Aþðx−; x⊥Þ

$
; ð4Þ

which represents the eikonal propagation of the quark. The
brackets h…i denote the off-forward proton matrix element
hp0j…jpi
hpjpi with p0 ¼ pþ Δ. In momentum space, we define

F xð ~q⊥;Δ⊥;zÞ

≡
Z

d2r⊥d2b⊥
ð2πÞ4

eiΔ⊥·b⊥þi ~q⊥·r⊥Sxðb⊥þð1−zÞr⊥;b⊥−zr⊥Þ

¼
Z

d2r⊥d2b0⊥
ð2πÞ4

eiΔ⊥·b0⊥þi ~q⊥·r⊥e−iδ⊥·r⊥Sx

#
b0⊥þ

r⊥
2
;b0⊥−

r⊥
2

$

¼Fxðq⊥≡ ~q⊥−δ⊥;Δ⊥Þ; ð5Þ

where δ⊥ ≡ 1−2z
2 Δ⊥ and

Fxðq⊥;Δ⊥Þ ¼
Z

d2r⊥d2b⊥
ð2πÞ4

eib⊥·Δ⊥þir⊥·q⊥

× Sx

#
b⊥ þ r⊥

2
; b⊥ −

r⊥
2

$
: ð6Þ

In momentum space, we can also write F x ¼
1

ð2πÞ4
R
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sxðx1⊥; x2⊥Þ with k1⊥ ≡

~q⊥ þ zΔ⊥ and k2⊥ ≡ ~q⊥ − ð1 − zÞΔ⊥ conjugate to x1⊥ and
x2⊥, respectively. The directions of the transverse momenta
flow of exchanged gluons are labeled in Fig. 2. Following
Ref. [16], we decompose F into the angular independent
and “elliptic” parts

FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude in momentum space.
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[Hatta, Xiao, Yuan, 17] gluon GPDs with asymmetric dipole for arbitrary z

Dipole scattering amplitude Sx =
〈

1
Nc

Tr
[
U(x1⊥)U†(x2⊥)

]〉
x

defines GTMD:

Fx(q̃⊥,∆⊥) =
1

(2π)4

∫
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sx(x1⊥, x2⊥)

with k1⊥ ≡ q̃⊥ + z∆⊥ and k2⊥ ≡ q̃⊥ − (1− z)∆⊥.

Symmetric dipole definition with shifts of coordinate and momentum

Fx(q⊥,∆⊥) =

∫
d2r⊥d2b⊥

(2π)4 eib⊥·∆⊥+ir⊥·q⊥Sx

(
b⊥ +

r⊥
2
, b⊥ −

r⊥
2

)
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Dipole scattering amplitude

Several properties of the scattering amplitude:

Sx =
〈

1
Nc

Tr
[
U(b⊥ + r⊥

2 )U†(b⊥ − r⊥
2 )
]〉

x

Due to the Pomeron exchange, Sx is predominantly real in small-x.

Sx = S∗x ⇒ Sx can only depend on b2
⊥, r2
⊥ and (r⊥ · b⊥)2n.

Double Fourier transform:

Fx(q⊥,∆⊥) =

∫
d2r⊥d2b⊥

(2π)4 eib⊥·∆⊥+ir⊥·q⊥Sx

(
b⊥ +

r⊥
2
, b⊥ −

r⊥
2

)
Angular dependence after double Fourier transform

Fx(q⊥,∆⊥) = F0(|q⊥|, |∆⊥|) + 2 cos 2(φq⊥ − φ∆⊥)Fε(|q⊥|, |∆⊥|) + · · · .

Non-trivial angular correlation between ∆⊥ and q⊥ due to small-x dynamics.
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Explicit expressions for gluon GPDs

that from the helicity-flip gluon GPD in the collinear
framework. Meanwhile, for the azimuthally symmetric
cross section, the dipole formalism leads to divergence
in the collinear limit. This can be interpreted as the OðαsÞ
contribution to the quark GPD in the collinear framework,
according to the relation between the quark GPD and the
gluon GPD at small x. These results establish a complete
consistency between the dipole formalism and the collinear
factorization framework.
The rest of the paper is organized as follows. In Sec. II,

we establish the connection between the gluon GPDs at
small x and the gluon Wigner distributions. In particular,
the so-called elliptic gluon Wigner distribution will con-
tribute to the helicity-flip gluon GPD. In Sec. III, we
calculate the DVCS amplitude in the dipole framework in
coordinate space and derive the cos 2ϕ correlation. In
Sec. IV, we perform the calculations in momentum space
and demonstrate the consistency with the coordinate space
derivations in Sec. III. The comparisons to the collinear
factorization results will be made in Secs. III and IVand the
Appendix. In Sec. V, we compute the contribution from the
longitudinally polarized virtual photon and find the cosϕ
correlation. Finally, we summarize our paper in Sec. VI.

II. DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to
calculate the DVCS amplitude at small x, namely, the
dipole S-matrix. We shall clarify the relation between the
gluon GPDs and the dipole S-matrix and show that the latter
provides an efficient description of the DVCS amplitude
which is free of collinear divergences.
In the dipole framework, the DVCS amplitude is

represented by the diagram in Fig. 2 in coordinate space
(left) and in momentum space (right). We work in a frame
in which the virtual photon and the proton are collinear,
with the proton moving fast in the positive z-direction.
In coordinate space, we fix the transverse coordinates of
the quark and antiquark to be x1⊥ ¼ b⊥ þ ð1 − zÞr⊥ and
x2⊥ ¼ b⊥ − zr⊥, respectively, with z defined as the longi-
tudinal momentum fraction of the quark with respect to the
incoming virtual photon. The “center of mass” of the qq̄
system coincides with the virtual photon coordinate
zx1⊥ þ ð1 − zÞx2⊥ ¼ b⊥. The size of the qq̄ system is

r⊥ ¼ x1⊥ − x2⊥. In this setup, the forward S-matrix for the
qq̄ pair scattering off the target reads

Sxðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥Þ

≡
!

1

Nc
Tr½Uðb⊥ þ ð1 − zÞr⊥ÞU†ðb⊥ − zr⊥Þ&

"

x
; ð3Þ

where x is the relevant momentum fraction of gluons in
the target. In DVCS and in the small-x limit, it is related
to the Bjorken variable xBj as x ≈

xBj
2 , which is also the same

as the skewness parameter ξ (defined below). U is the
Wilson line

Uðx⊥Þ ¼ P exp
#
−ig

Z
∞

−∞
dx−Aþðx−; x⊥Þ

$
; ð4Þ

which represents the eikonal propagation of the quark. The
brackets h…i denote the off-forward proton matrix element
hp0j…jpi
hpjpi with p0 ¼ pþ Δ. In momentum space, we define

F xð ~q⊥;Δ⊥;zÞ

≡
Z

d2r⊥d2b⊥
ð2πÞ4

eiΔ⊥·b⊥þi ~q⊥·r⊥Sxðb⊥þð1−zÞr⊥;b⊥−zr⊥Þ

¼
Z

d2r⊥d2b0⊥
ð2πÞ4

eiΔ⊥·b0⊥þi ~q⊥·r⊥e−iδ⊥·r⊥Sx

#
b0⊥þ

r⊥
2
;b0⊥−

r⊥
2

$

¼Fxðq⊥≡ ~q⊥−δ⊥;Δ⊥Þ; ð5Þ

where δ⊥ ≡ 1−2z
2 Δ⊥ and

Fxðq⊥;Δ⊥Þ ¼
Z

d2r⊥d2b⊥
ð2πÞ4

eib⊥·Δ⊥þir⊥·q⊥

× Sx

#
b⊥ þ r⊥

2
; b⊥ −

r⊥
2

$
: ð6Þ

In momentum space, we can also write F x ¼
1

ð2πÞ4
R
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sxðx1⊥; x2⊥Þ with k1⊥ ≡

~q⊥ þ zΔ⊥ and k2⊥ ≡ ~q⊥ − ð1 − zÞΔ⊥ conjugate to x1⊥ and
x2⊥, respectively. The directions of the transverse momenta
flow of exchanged gluons are labeled in Fig. 2. Following
Ref. [16], we decompose F into the angular independent
and “elliptic” parts

FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude in momentum space.
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1
P+

∫
dζ−

2π
eixP+ζ−〈p′|F+i(−ζ/2)F+j(ζ/2)|p〉

=
δij

2
xHg(x,∆⊥) +

xETg(x,∆⊥)

2M2

(
∆i
⊥∆j
⊥ −

δij∆2
⊥

2

)
+ · · · ,

≈ 2Nc

αs

∫
d2q⊥

(
qi
⊥ −

∆i
⊥

2

)(
qj
⊥ +

∆j
⊥

2

)
F(q⊥,∆⊥)

Comparing coefficients gives [Hatta, Xiao, Yuan, 17]

Helicity conserved: xHg(x,∆⊥) =
2Nc

αs

∫
d2q⊥q2

⊥F0

Helicity flipping: xETg(x,∆⊥) =
4NcM2

αs∆2
⊥

∫
d2q⊥q2

⊥Fε
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Probing gluon GPD at small-x

DVCS[Hatta, Xiao, Yuan, 17] and DVMP [Mantysaari, Roy, Salazar, Schenke, 20]

γ∗ γ

P P ′

z

1 − z

∆

x

y

z

p/A

∆φ∆l

Lepton Plane

Hadron Plane

γ

p/A

dσTT

dxBdQ2d2∆⊥
=

α3
em

πxBjQ2

{(
1− y +

y2

2

)
(A2

0 +A2
2) + (1− y)2A0A2 cos(2φ∆l)

}
A0: helicity conserved amplitude; A2: helicity-flip amplitude
Use the lepton plane as a reference, one can measure angular correlations.
cos 2φ∆l correlation is sensitive to the helicity-flip gluon GPD xETg.

Helicity conserved: xHg(x,∆⊥) =
2Nc

αs

∫
d2q⊥q2

⊥F0

Helicity flipping: xETg(x,∆⊥) =
4NcM2

αs∆2
⊥

∫
d2q⊥q2

⊥Fε
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Dipole model and HERA data

[Kowalski, Teaney, 03; Kowalski, Motyka, Watt, 06]
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Diffractive vector meson production

ρ, φ, J/Ψ, Υ · · ·

Coherent Incoherent

ρ, φ, J/Ψ, Υ · · ·

X

Incoherent DVMP is sensitive to the proton fluctuating shape. (Variance)
[Mantysaari, Schenke, 16; Mantysaari, Roy, Salazar, Schenke, 20]

Good-Walker: measure of fluctuation
dσincoh

d̂t
∼ 〈|A|2〉 − |〈A〉|2
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Spatial Imaging at EIC

Ultimate goal: spatial distributions (via FT). [EIC white paper, 1212.1701]
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Summary

Exclusive Processes and Generalized Parton Distributions

Generalized parton distributions (GPDs) can be extracted from suitable exclusive scat-
tering processes in e+p collisions. Examples are deeply virtual Compton scattering (DVCS:
�⇤+p ! �+p) and the production of a vector meson (�⇤+p ! V +p). The virtual photon
is provided by the electron beam, as usual in deep inelastic scattering processes (see the
Sidebar on page 18). GDPs depend on three kinematical variables and a resolution scale:

• x + ⇠ and x � ⇠ are longitudinal par-
ton momentum fractions with respect
to the average proton momentum (p +
p0)/2 before and after the scattering, as
shown in Figure 2.18.

Whereas x is integrated over in the
scattering amplitude, ⇠ is fixed by the
process kinematics. For DVCS one has
⇠ = xB/(2 � xB) in terms of the usual
Bjorken variable xB = Q2/(2p · q). For
the production of a meson with mass
MV one finds instead ⇠ = xV /(2� xV )
with xV = (Q2 + M2

V )/(2p · q).

• The crucial kinematic variable for par-
ton imaging is the transverse momen-
tum transfer �T = p0T � pT to the
proton. It is related to the invariant
square t = (p0 � p)2 of the momentum
transfer by t = �(�2

T + 4⇠2M2)/(1 �
⇠2), where M is the proton mass.

• The resolution scale is given by Q2

in DVCS and light meson production,
whereas for the production of a heavy
meson such as the J/ it is M2

J/ +Q2.

Even for unpolarized partons, one has a nontrivial spin structure, parameterized by two
functions for each parton type. H(x, ⇠, t) is relevant for the case where the helicity of the
proton is the same before and after the scattering, whereas E(x, ⇠, t) describes a proton
helicity flip. For equal proton four-momenta, p = p0, the distributions H(x, 0, 0) reduce to
the familiar quark, anti-quark and gluon densities measured in inclusive processes, whereas
the forward limit E(x, 0, 0) is unknown.

Weighting with the fractional quark charges eq and integrating over x, one obtains a
relation with the electromagnetic Dirac and Pauli form factors of the proton:

X

q

eq

Z
dx Hq(x, ⇠, t) = F p

1 (t) ,
X

q

eq

Z
dx Eq(x, ⇠, t) = F p

2 (t) (2.14)

and an analogous relation to the neutron form factors. At small t the Pauli form factors
of the proton and the neutron are both large, so that the distributions E for up and down
quarks cannot be small everywhere.

x + ⇠ x � ⇠

p p0

x + ⇠ x � ⇠

p p0

�⇤ �⇤� V

Figure 2.18: Graphs for deeply virtual Compton scattering (left) and for exclusive vector
meson production (right) in terms of generalized parton distributions, which are represented by
the lower blobs. The upper filled oval in the right figure represents the meson wave function.

42

Gluon spatial imaging through DVMP.

Probing non-trivial angular correlation and helicity-flip GPD.

Study of fluctuations via incoherent diffractive productions.

Another interesting topic: Heavy quarkonium near threshold and proton mass.
[D. Kharzeev, 96; ...; Hatta, Yang, 18; Kou, Wang, Chen, 21; Guo, Ji, Liu, 21;
Sun, Tong, Yuan, 21;...] Small-x picture no longer applies. Paradigm shift!
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