TMDs and Large-x at the EIC

Christopher Dilks 2nd PSQ@EIC Meeting 20 July 2021

Research supported by the

Office of Science

Outline

TMD PDFs from SIDIS Hadron and Dihadron Production

• Large-x Region and Experiment Overlaps \rightarrow Low-y EIC

Reconstruction at Low y

 \Rightarrow Impact on p_{T} at Low y

TMD PDFs

TMD PDFs

Quark Polarization

TMD PDFs

Single-hadron SIDIS

 $ep \rightarrow ehX$

<u>x: momentum fraction carried by struck quark, z: fractional energy of hadron</u>

TMD PDFs Impact on Sivers Function 0 0 $A_{UT} = F_{UT} / F_{UU}$ $-f_{1T;u\leftarrow p}^{\perp}[2\text{GeV}]$ x $5 \cdot 10^{-3}$ 10^{-2} **Current uncertainty** $5 \cdot 10^{-2}$ +EIC pseudodata 2.0 Boer-Mulders 🖬 - 😱 - 🚯 1 0.5 0. large x Worm Gear $\mathbf{h}_{\mathbf{1L}}^{\perp}$ = 0.751.0 0.5 $k_T[\text{GeV}]$ -1Transversity hIT = (T) $f_{1T;d\leftarrow p}^{\perp}[2\text{GeV}]$ Sivers f₁₇ - \odot x $5 \cdot 10^{-3}$ Pretzelosity h_{1T} - 10^{-2} 2.0p ↦ - 🕣→ s₁₁- 💽 1.5 $5 \cdot 10^{-2}$ 1.0 0.1Worm Gear ₈₁₁ - 🤄 0.5C. Dilks 0. 7 0.50.250.50.75 1.0° large x $k_T[\text{GeV}]$

TMD PDFs Transversity h_{1T} $A_{UT} = F_{UT} / F_{UU}$ 0.6 Pavia18 JAM20 Pavia18 + EIC (ep) JAM20 + EIC(ep)0.4 Pavia18 + EIC (ep + e³He) $JAM20 + EIC(ep + e^{3}He)$ $0.50 \cdot$ 0.2 U x h₁(x) \boldsymbol{u} Boer-Mulders **b**_1 - 😱 - 🚯 Worm Gear **b**_1 ᢙ d-0.250.250.000.500.751.00Transversity h_{IT}= ¢ -0.2 x▲(Pavia18+EIC)/▲(Pavia18) U **Sivers** f₁₇ - \bigcirc $Q^2 = 4 \text{ GeV}^2$ 0.5 Pretzelosity h_{1T}¹ = ď 0.5 8₁₁-0 **-→** 0^{Lu_} 10⁻³ 10⁻² 10⁻¹ Worm Gear ₈₁₁ - 📀 х C. Dilks 8 $Q^2 = 2.4 \text{ GeV}^2$ large x

Outline

♦ TMD PDFs from SIDIS Hadron and Dihadron Production

\Rightarrow Large-x Region and Experiment Overlaps \rightarrow Low-y EIC

Reconstruction at Low y

 \blacklozenge Impact on p_T at Low y

Evolution

- Goal: measure asymmetries at large $x \sim 10^{-1}$
- Could go to large Q², but asymmetry may decrease as Q² increases; very high Q² would push above PID limits

 \blacksquare What are the limitations at small Q², large x?

Ideal situation: (x,Q²)-overlap data from JLab to EicC to EIC, but what do we need to do to get there?

EIC Yellow Report Design

SIDIS Kinematic Coverage for Sivers and Collins Current data for Collins and Sivers asymmetry: 10⁴ COMPASS h[±]: P_{hT} < 1.6 GeV/c HERMES $\pi^{0,\pm}$, K[±]: P_{hT} < 1 GeV/c JLab Hall-A π[±]: P_{hT} < 0.45 GeV/c</p> XXX JLab 12 10³ -ം STAR 500 GeV -1 < η < 1 Collins °°° $^{\circ}$ STAR 200 GeV -1 < η < 1 Collins (GeV²) ■ STAR 500 GeV 1 < η < 4 Collins □ STAR 200 GeV 1 < η < 4 Collins 0 STAR W bosons 10² EIC 1/5 = 140 GeV, 0.01 = V = 0.95 ğ y=0.05 EIC 1/5 = 20 GeV, 0.01 = Y = 0.95 y=0.03 EIC y_{min} 10 y=0.01 JLab 12 GeV 10⁻² 10⁻³ 10^{-4} 10⁻¹

C. Dilks

х

21

х

23

Outline

♦ TMD PDFs from SIDIS Hadron and Dihadron Production

 \clubsuit Large-x Region and Experiment Overlaps \rightarrow Low-y EIC

Reconstruction at Low y

 \blacklozenge Impact on p_T at Low y

Kinematics Reconstruction Methods

- SIDIS kinematics depends on what is used to reconstruct quantities such as x and Q²
 - Scattered electron
 - Hadrons
 - Some mixture

Prog.Part.Nucl.Phys. 69 (2013) 28-84, 1208.6087 [hep-ph]

(10x100) Fraction in correct bin

study from Connor Pecar

29

Relative Deviation in z (10x100)

study from Connor Pecar

Relative Deviation in p_{τ} (10x100)

study from Connor Pecar

31

Average Deviation in ϕ_h (10x100)

study from Connor Pecar

32

z and $p_{_{\rm T}}$ Resolutions

 $0.4 \text{ GeV} < P_{hT} < 0.6 \text{ GeV}, \\ 0.4 < z < 0.5$

z resolutions

EIC 5×41	x range					
$Q^2 \operatorname{range}(\operatorname{GeV}^2)$	0.0001 - 0.003	0.003 - 0.01	0.01 - 0.03	0.03 - 0.1	0.1 - 0.5	
30–100	—	—	—	0.011	0.029	
10-30	-	_	0.014	0.021	0.080	
5-10	—	0.017	0.020	0.088	0.17	
3–5	-	0.017	0.044	0.14	0.13	
1–3	0.017	0.032	0.11	0.17	_	

0.05<y<0.95

*kinematics reconstructed from electron

p_{τ} resolutions

EIC 5×41	x range					
$Q^2 \operatorname{range}(\operatorname{GeV}^2)$	0.0001 - 0.003	0.003 - 0.01	0.01 - 0.03	0.03 - 0.1	0.1 - 0.5	
30-100	-	_	_	0.030	0.15	
10-30	—	—	0.022	0.059	0.24	
5 - 10	-	0.021	0.040	0.17	0.34	
3-5	-	0.025	0.069	0.21	0.29	
1–3	0.021	0.035	0.11	0.19	_	

x Resolutions

 $\begin{array}{l} 0.4 \; {\rm GeV} < P_{hT} < 0.6 \; {\rm GeV}, \\ 0.35 \; < \; z \; < \; 0.4 \end{array}$

Compare different y_{min} **values**

0.01 < y < 0.95	x range						
$Q^2 \operatorname{range}(\operatorname{GeV}^2)$	0.0001 - 0.01	0.01 - 0.03	0.03 - 0.1	0.1 - 0.5			
10-100	—	0.0006	0.003	0.060			
5 - 10	0.00018	0.0015	0.021	0.198			
3–5	0.00039	0.0030	0.042	0.168			
1–3	0.00072	0.0072	0.063	0.120			
0.05 < y < 0.95	x range						
$Q^2 \operatorname{range}(\operatorname{GeV}^2)$	0.0001 – 0.01	0.01 – 0.03	0.03 - 0.1	0.1 - 0.5			
10 - 100	—	0.0006	0.003	0.042			
5 - 10	0.000018	0.0015	0.021	0.060			
3–5	0.00039	0.0030	0.024	0.033			
1–3	0.00066	0.0066	0.018	_/			

*kinematics reconstructed from electron

Outline

♦ TMD PDFs from SIDIS Hadron and Dihadron Production

 \clubsuit Large-x Region and Experiment Overlaps \rightarrow Low-y EIC

Reconstruction at Low y

 \Rightarrow Impact on p_T at Low y

Goal: Explore low-y region (large x, small Q^2): Vary minimum y limit, and check impact on p_T , $q_T = p_T/z$, and q_T/Q

Event generation: 1M events from PythaeRHIC (6), 5x41 GeV

Fast simulation: EIC-smear (via ESCalate v1.1.0)

Kinematics reconstruction: highest-E electron

Event Selection Criteria

📕 W > 3 GeV

$$\blacksquare$$
 y_{min} < y < 0.95 (vary y_{min})

$$z_{pion} > 0.2$$
 (effectively $z_{pair} > 0.4$)

pion $p_{T \mid ab} > 100 \text{ MeV}$ (tracking limit)

pion
$$x_F > 0$$

C. Dilks

 $Q^2 > 1 \text{ GeV}^2$ (generator level)

Two z bins: • 0.2 < z < 0.3

note: some plots use notation p_{perp} or p_{\perp} ; they denote the same as p_{τ} : the component of the pion momentum transverse to q, in the proton rest frame

36

Q² vs. x for selected dihadrons

p_{T} Distributions for varying y_{min}

in 2 bins of z

p_{T} Distributions for varying y_{min}

in 2 bins of z

q_{T}/Q Distributions for varying y_{min}

p_{T} Distributions for varying y_{min}

in 2 bins of q_{T}/Q

For x>0.05, as y_{min} increases, minimum Q² increases \rightarrow imparts limits on q_T/Q

C. Dilks

44

For x>0.05, as y_{min} increases, minimum Q² increases \rightarrow imparts limits on q_T/Q

Similar story for q_T/Q vs p_T correlation As y_{min} increases, relatively more low pT events are cut

Similar story for q_T/Q vs p_T correlation As y_{min} increases, relatively more low pT events are cut

Similar story for q_T/Q vs p_T correlation As y_{min} increases, relatively more low pT events are cut

Vector Meson Decays → Muddy the Waters for Interpretation

- Select $\rho \rightarrow \pi^+\pi^-$ dihadrons, and calculate q_T/Q using the ρ , vs. using the π^+
- **Pion** $q_T/Q~1$ could correspond to ρ-meson $q_T/Q<<1$
- C. Dilks VM decays can confuse TMD region classification Trend unaffected by y_{min} cuts

 π +

Summary

Interested in TMDs at large x (x>0.05), where spin-orbit correlations are likely relevant

- Large Q² may have smaller asymmetries
- Better to look at small Q², where electron and hadron are detected at small scattering angles
- Minimum y restricts phase space at large x and small Q^2

Overlap of experimental phase space vital for evolution studies, providing a more complete picture

- Limitations at low-y at the EIC:
 - > Smaller p_{T}
 - > Poorer resolutions (z, p_T , x)
- Increasing minimum y causes:
 - $\,\,$ Losses at small $\boldsymbol{p}_{_{T}}$ and small $\boldsymbol{q}_{_{T}}$
 - > Localized losses at small p_T for $q_T/Q < 0.25$
 - $\,\,$ Larger losses at large $q_{_T}\!/Q$ than at small $q_{_T}\!/Q$
 - Increase minimum Q² (given x>0.05)

Vector mesons muddy the waters

• A pion with large $p_T/z/Q$, considered outside the TMD region, could come from a VM with small $p_T/z/Q$, well within the TMD region

backup

Kinematic Coverage for y > 0.025

H. Avakian, REF2020, Dec 9

Kinematics Reconstruction Methods

Low Q² and large x kinematics in EIC: P_T-distributions

For large x(x>0.05) large y cuts can significantly change P_T -distributions

H. Avakian, REF2020, Dec 9

p_{τ} Distributions for varying y_{min}

in 2 bins of q₋/Q

q_T/Q Distributions for varying y_{min}

p_{T} Distributions for varying y_{min}

in 2 bins of q_T/Q

 $q_{T}/Q < 1.0$

C. Dilks

p_{T} Distributions for varying y_{min}

in 2 bins of q_{T}/Q

 $q_{T}/Q < 1.0$

q_{τ} Distributions for varying y_{min}

in 2 bins of z

y_{min} = **0.03**

0.2 < z < 0.3

0.3 < z < 1

q_{T} Distributions for varying y_{min}

in 2 bins of z

y_{min} = **0.05**

0.2 < z < 0.3

0.3 < z < 1

Vector Meson Decays \rightarrow **Muddy Waters for Interpretation**

