

Exotic hadron spectroscopy and heavy flavors at EIC

Feng-Kun Guo
Institute of Theoretical Physics, CAS

2nd PSQ@EIC Meeting: Precision Studies on QCD at EIC

July 19-23, 2021

Conventional and exotic hadrons

- Most hadrons observed prior to 2003 can be well described in terms of conventional hadrons
- Exotic hadrons are expected; focus of intensive search since long
- Novel experiments (B factories) brought surprises

Hidden-charm XYZ states

Bottomonium spectrum: much less states observed

Pentaquark candidates: P_c

PRL115(2015)072001 [arXiv:1507.03414]

$$M_1 = (4380 \pm 8 \pm 29) \ {
m MeV}, \qquad \Gamma_1 = (205 \pm 18 \pm 86) \ {
m MeV}, \ M_2 = (4449.8 \pm 1.7 \pm 2.5) \ {
m MeV}, \qquad \Gamma_2 = (39 \pm 5 \pm 19) \ {
m MeV}.$$

$$M_1 = (4380 \pm 8 \pm 29) \text{ MeV}, \qquad \Gamma_1 = (205 \pm 18 \pm 86) \text{ MeV},$$

- observed in $J/\psi p$ invariant mass distribution: pentaquark $(c\bar{c}uud)$ candidates
- quantum numbers not fully determined
- Narrow pentaguark-like structures with hidden-charm had been predicted 5 years before (07.2010):

Prediction of narrow N^* and Λ^* resonances with hidden charm above 4 GeV, J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL105(2010)232001

States with ordinary quantum numbers

XYZ	Production processes	Decay channels
$\chi_{c0}(3860)$	$e^+e^- \to J/\psi X, \gamma\gamma \to X^{\rm a}$	$D\bar{D}, \gamma \gamma^{\mathrm{a})}$
$\chi_{c1}(3872)$	$B \to KX/K\pi X, e^+e^- \to \gamma X,$	$\pi^{+}\pi^{-}J/\psi, \omega J/\psi, D^{*0}\bar{D}^{0}, D^{0}\bar{D}^{0}\pi^{0},$
	$pp/p\bar{p}$ semi-inclusive, $\gamma^*\gamma$, PbPb,	$\pi^0 \chi_{c1}, \gamma J/\psi, \gamma \psi(2S)$
	$\gamma^* N \to X \pi^{\pm} N^{\rm b}$	
X(3915)	$B \to KX, \gamma \gamma \to X, e^+e^- \to \gamma X$	$\omega J/\psi, \gamma\gamma$
$\chi_{c2}(3930)$	$\gamma\gamma \to X$, pp semi-inclusive	$Dar{D}, \gamma\gamma$
X(3940)	$e^+e^- \to J/\psi + X$	$Dar{D}^*$
$\chi_{c1}(4140)$	$B \to KX$, $p\bar{p}$ semi-inclusive ^{c)}	$\phi J/\psi$
X(4160)	$e^+e^- \to J/\psi + X$	$D^*\bar{D}^*$
$\chi_{c1}(4274)$	$B \to KX$	$\phi J/\psi$
X(4350)	$\gamma\gamma \to X$	$\phi J/\psi, \gamma \gamma$
$\chi_{c0}(4500)$	$B \to KX$	$\phi J/\psi$
$\chi_{c0}(4700)$	$B \to KX$	$\phi J/\psi$
$\psi_2(3823)$	$B \to K\psi_2, e^+e^- \to \pi\pi\psi_2$	$\gamma \chi_{c1}$
$\psi_3(3842)$	pp semi-inclusive	$Dar{D}$
$\psi(4230/4260)$	$e^+e^- \to Y, e^+e^- \to Y\gamma_{\rm ISR}$	$\pi\pi J/\psi, \pi\pi\psi(2S), \chi_{c0}\omega, h_c\pi\pi,$
		$D\bar{D}^*\pi, \gamma\chi_{c1}(3872), J/\psi K\bar{K}$
$\psi(4360)$	$e^+e^- \to Y, e^+e^- \to Y\gamma_{\rm ISR}$	$\pi\pi\psi(2S), \ \pi\pi\psi_2(3823)^{\rm d}, \ D_1(2420)\bar{D}^{\rm d}$
$\psi(4390)$	$e^+e^- \to Y$	$\pi\pi h_c, \pi\pi\psi(3770)^{\mathrm{d}}$
$\psi(4660)$	$e^+e^- \to Y\gamma_{\rm ISR}$	$\pi\pi\psi(2S), \Lambda_c\bar{\Lambda}_c, D_s^+D_{s1}(2536)^-$

Explicitly exotic states

XYZ	Production processes	Decay channels
$Z_c(3900)^{\pm}$	$e^+e^- \to \pi Z_c$	$\pi J/\psi, Dar{D}^*$
	b-hadron semi-inclusive decays	
$X(4020)^{\pm}$	$e^+e^- \to \pi Z_c$	$\pi h_c, D^* \bar{D}^*$
$X(4050)^{\pm}$	$B \to KZ_c$	$\pi^{\pm}\chi_{c1}$
$X(4055)^{\pm}$	$e^+e^- \to \pi X$	$\pi^{\pm}\psi(2S)$
$X(4100)^{\pm}$	$B \to KZ_c$	$\pi^{\pm}\eta_c$
$Z_c(4200)^{\pm}$	$B \to KZ_c$	$\pi^{\pm}J/\psi$
$R_{c0}(4240)^{-}$	$B \to KR_{c0}$	$\pi^-\psi(2S)$
$X(4250)^{\pm}$	$B \to KZ_c$	$\pi^{\pm}\chi_{c1}$
$Z_c(4430)^{\pm}$	$B \to KZ_c$	$\pi^{\pm}J/\psi, \pi^{\pm}\psi(2S)$
$P_c(4312)^+$	$\Lambda_b \to K^- P_c^{\mathrm{e}}$	pJ/ψ
$P_c(4380)^+$	$\Lambda_b \to K^- P_c$	pJ/ψ
$P_c(4440)^+$	$\Lambda_b \to K^- P_c$	pJ/ψ
$P_c(4457)^+$	$\Lambda_b \to K^- P_c$	pJ/ψ

- \Box *b*-hadron decays with $b \rightarrow c\bar{c}s$
- $\Box e^+e^-$ collisions
- Hadron (ion) collisions

- \square In e^+e^- collisions,
 - ➤ Energy coverage limited: ≤ 4.9 GeV @BESIII, thus
 - ✓ Vector heavy quarkonia; little is known above that energy (BEPCII-upgrade planned);
 - ✓ for other quantum numbers, even lower mass accessible: $e^+e^- \rightarrow X + \gamma/\text{pions}$; resonances decaying into $\psi\phi$, $\psi\omega$ can hardly be studied
 - \checkmark No access to charm-anticharm baryon-pair thresholds higher than $\Lambda_c^+\overline{\Lambda}_c^-$, e.g. $\Sigma_c\overline{\Sigma}_c$

$$e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$$

Data taken from BESIII, PRL120(2018)132001 Fits described in X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41(2021)65

 $ightharpoonup e^+e^-
ightharpoonup \gamma_{\rm ISR} Y$ and two-photon processes: much lower rates

□ In weak decays $b \rightarrow [c\bar{c}]s$

Three/four-body hadronic decays:

$$B \to K X$$

$$B \to K X$$
, $\Lambda_b \to K P_c$

Process	Production	Decay	
		$X \to \pi^+ \pi^- J/\psi$ [4,110–115] $X \to D^{*0} \bar{D}^0$ [116–118] $X \to \gamma J/\psi$ [119–122] $X \to \gamma \psi$ (2S) [119,121]	X(3872)
	$B \to K + X$	$X \rightarrow \omega J/\psi [107,123,124]$	X(3872) Y(3940)
		$X \to \gamma \chi_{c1} [125]$	X(3823)
B and A_b decays		$X \to \phi J/\psi \ [126-133]$	Y(4140) Y(4274) X(4500) X(4700)
		$Z \to \pi^{\pm} \chi_{c1} [134,135]$	$Z_1(4050)$ $Z_2(4250)$
	$B \to K + Z$	$Z \rightarrow \pi^{\pm} J/\psi \text{ [46,136]}$	$Z_c(4200)$ $Z_c(4430)$
		$Z \to \pi^{\pm} \psi(2S) [30,136-140]$	$Z_c(4240)$ $Z_c(4430)$
	$B \to K\pi + X$	$X \to \pi^+ \pi^- J/\psi \text{ [141]}$	X(3872)
	$\Lambda_b \to K + P_c$	$P_c \rightarrow pJ/\psi$ [35]	P_c (4380) P_c (4450)

Lebed, Mitchell, Swanson, PPNP93(2017)143

Masses limited to

$$M_R - M_K \approx 4.8 \, \text{GeV}$$

$$M_{\Lambda_b} - M_K \approx 5.1 \, \mathrm{GeV}$$

Masses of initial states fixed

- Difficulties for multi-hadron final states
 - ✓ Many resonances from the cross channel:

branching fractions often unknown, interference between overlapping resonances, multi-channel unitarity, ...

- - intermediate states can be different from external ones; threshold cusps; triangle singularities or more complicated Landau singularities
- ✓ We need combined th.+exp. efforts: other production processes; better knowledge of light-flavor resonances; amplitude analysis framework considering the above 11 subtleties

Photoproduction: charm

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50 \sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is $\sim O(10^7-10^8)$; many more open-charm hadrons D and Λ_c

12

Photoproduction: bottom

Figure from D. P. Anderle et al. Front.Phys.16(2021)64701

For W=15-20 GeV,

- Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered), $\sigma(\gamma p \to b\bar{b}X)$ is about two orders higher
- Electroproduction: roughly two orders of magnitude (α) smaller, $\sim O(0.1~p{\rm b})$
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is $\sim O(10^4)$;

Hidden-charm exotic state observed by COMPASS

• Observation of $\tilde{X}(3872)$ in $\gamma^*N \to X^0\pi^{\pm}N'$ with 4.1σ

COMPASS, PLB783(2018)334

GeV $M_{\tilde{X}} = 3860.4 \pm 10.0 \text{ MeV}$

• The $\pi\pi$ invariant mass suggests $C(\tilde{X}) = -1$

Cross sections:

$$\sigma(\gamma N \to \tilde{X}\pi N') \times \mathcal{B}(\tilde{X} \to J/\psi \pi^+ \pi^-) = 71 \pm 28 \pm 39 \text{ pb}$$

 $\sigma(\gamma N \to X(3872)N') \times \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) < 2.9 \text{ pb (CL} = 90\%)$ ₁

Exclusive photo-production of hidden-charm states

• Estimates of exclusive photo-production of hidden-charm states normally assumes vector-meson dominance (for a list of refs., see Sec.2 in Anderle et al. Front.Phys.16(2021)64701):

> Estimated events for EicC

Exotic states	Production/decay processes	Detection efficiency	Expected events
$P_c(4312)$	$ep \to eP_c(4312)$ $P_c(4312) \to pJ/\psi$ $J/\psi \to l^+l^-$	~30%	15-1450
$P_c(4440)$	$ep \to eP_c(4440)$ $P_c(4440) \to pJ/\psi$ $J/\psi \to l^+l^-$	~30%	20-2200
$P_c(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	~30%	10-650
$P_b({ m narrow})$	$ep \to eP_b(\text{narrow})$ $P_b(\text{narrow}) \to p\Upsilon$ $\Upsilon \to l^+l^-$	~30%	0-20
$P_b(\text{wide})$	$ep \to eP_b(\text{wide})$ $P_b(\text{wide}) \to p\Upsilon$ $\Upsilon \to l^+l^-$	~30%	0-200
$\chi_{c1}(3872)$	$ep \to e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \to \pi^{+}\pi^{-}J/\psi$ $J/\psi \to l^{+}l^{-}$	~50%	0-90
$Z_c(3900)^+$	$ep \to eZ_c(3900)^+ n$ $Z_c^+(3900) \to \pi^+ J/\psi$ $J/\psi \to l^+ l^-$	~60%	90-9300
			1.5

Anderle et al. Front. Phys. 16(2021) 64701

Exclusive photo-production of hidden-charm states

- ullet However, vector-meson dominance model might not work well for J/ψ and Υ
 - ightharpoonup Open-charm channels easier to be produced than $J/\psi p$, coupled-channel effects could be important

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053

See also a recent critical analysis of the VMD model using DSE,

Y.-Z. Yu, S.-Y. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui, C. D. Roberts, arXiv:2107.03488

Production of pentaquarks and XYZ in semi-inclusive processes

Production of P_c in semi-inclusive reactions:

The method has been used to estimate the X(3872) production at hadron colliders

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p} \rightarrow X)$	[nb]Exp.	Λ =0.5 GeV	Λ =1.0 GeV
Tevatron	37-115	7 (5)	29 (20)
LHC-7	13-39	13 (4)	55 (15)

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

Production of pentaquarks and XYZ in semi-inclusive processes

 Charm hadron pairs generated using Pythia

Considered machine configurations

	COMPASS	EicC	US-EIC
lepton energy (GeV)	μ^- : 200	e^{-} : 3.5	e^{-} : 20
proton energy (GeV)	0	20	250
luminosity (cm $^{-2}$ s $^{-1}$)	2×10^{32}	2×10^{33}	10^{34}

Z. Yang, FKG, arXiv:2107.xxxxx

Production of pentaquarks and XYZ in semi-inclusive processes

 Order-of-magnitude estimates of the semi-inclusive lepto-production of hidden-charm hadronic molecules (in units of pb)

	constituent	COMPASS	EicC	US-EIC
X(3872)	$D\bar{D}^*$	19(78)	21(89)	216(904)
$Z_c(3900)^0$	$D\bar{D}^*$	$0.3 \times 10^3 (1.2 \times 10^3)$	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
$Z_c(3900)^+$	$D^{*+}\bar{D}^0$	$0.2 \times 10^3 (0.9 \times 10^3)$	$0.3 \times 10^3 (1.0 \times 10^3)$	$2.7 \times 10^3 (9.9 \times 10^3)$
$Z_c(4020)^0$	$D^*\bar{D}^*$	$0.1 \times 10^3 (0.5 \times 10^3)$	$0.2 \times 10^3 (0.6 \times 10^3)$	$1.7 \times 10^3 (6.3 \times 10^3)$
Z_{cs}^-	$D^{*0}D_s^-$	8.3(29)	19(69)	253(901)
Z_{cs}^{*-}	$D^{*0}D_s^{*-}$	6.2(22)	14(51)	192(679)
$P_c(4312)$	$\Sigma_c \bar{D}$	0.8(4.1)	0.8(4.1)	15(73)
$P_c(4440)$	$\Sigma_c \bar{D}^*$	0.6(4.3)	0.7(4.7)	11(79)
$P_c(4457)$	$\Sigma_c \bar{D}^*$	0.5(2.0)	0.6(2.2)	9.9(36)
$P_c(4380)$	$\Sigma_c^* \bar{D}$	1.6(8.0)	1.6(8.4)	30(155)
$P_c(4524)$	$\Sigma_c^* \bar{D}^*$	0.8(3.6)	0.8(3.9)	14(67)
$P_c(4518)$	$\Sigma_c^* \bar{D}^*$	1.2(6.6)	1.2(6.9)	22(123)
$P_c(4498)$	$\Sigma_c^* \bar{D}^*$	1.1(9.3)	1.2(9.8)	21(173)

Summary

- EIC and EicC will also contribute a lot to hadron spectroscopy
- Consider open-flavor final states (challenge: detection efficiency?)
- ullet Supplementary to existing experiments Different production mechanisms: free of triangle singularities in B and Λ_b decays

Complementary to

Thank you for your attention!

EIC machines

Figure taken from D. P. Anderle et al. Front. Phys. 16(2021)64701