Time-reversal odd side of a jet

Wai Kin Lai
\section*{South China Normal University} University of California, Los Angeles

in collaboration with Xiaohui Liu, Hongxi Xing, and Manman Wang
based on
X. Liu and H. Xing, arXiv:2104.03328 [hep-ph], and work in progress

July 21, 2021
2nd PSQ@EIC Meeting

Motivation

- 3D structure of proton were studied typically using
- semi-inclusive hadron production
[Mulders, Tangerman (1996), Brodsky, Hwang, Schmidt (2002),
Bacchetta et al.(2007)]
- jet production/hadron in jet [Kang, Metz, Qiu, Zhou (2011), Liu, Ringer, Vodelsang, Yuan (2019), Kang, Lee, Shao, Zhao (2021)]
- Jet was thought to be able to probe only a subset of TMD PDFs (4 out of 8 at leading twist).
- This work: Investigate possibility of probing all TMD PDFs with jet.

Inclusive jet production in DIS

Consider $l+p(P, S) \rightarrow l^{\prime}+J\left(P_{J}\right)+X$

This is like SIDIS, but replace a hadron by a jet.
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

Jets at EIC

- A lot of statistics at small p_{T} in the forward region.

- Focus on the region
$\Lambda_{\mathrm{QCD}} \sim\left|\boldsymbol{P}_{J \perp}\right| \ll Q$.
This is unlike LHC, for which only jets with $\left|\boldsymbol{P}_{J \perp}\right| \gg \Lambda_{\mathrm{QCD}}$ are of interest.
- Still get jets if we use jet algorithms that involve energy (i.e. spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]) instead of k_{T}. Low $p_{T}\left(\sim \Lambda_{\mathrm{QCD}}\right)$ and low Q^{2} $\left(\sim 10-100 \mathrm{GeV}^{2}\right)$ is not a problem.

FACTORIZATION

- Factorization from SCET: $\sigma=H \otimes \Phi \otimes \mathcal{J}$
H : hard function, Φ : TMD PDFs, \mathcal{J} : TMD jet functions (JFs)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

$$
\begin{aligned}
\Phi^{i j}\left(x, p_{T}\right) & =\left.\int \frac{d y^{-} d^{2} \boldsymbol{y}_{T}}{(2 \pi)^{3}} e^{i p \cdot y}\langle P| \bar{\chi}_{n}^{j}(0) \chi_{n}^{i}(y)|P\rangle\right|_{y^{+}=0} \\
\mathcal{J}^{i j}\left(z, k_{T}\right) & =\left.\frac{1}{2 z} \sum_{X} \int \frac{d y^{-} d^{2} \boldsymbol{y}_{T}}{(2 \pi)^{3}} e^{i k \cdot y}\langle 0| \chi_{\bar{n}}^{i}(y)|J X\rangle\langle J X| \bar{\chi}_{\bar{n}}^{j}(0)|0\rangle\right|_{y^{-}=0}
\end{aligned}
$$

- TMD PDFs and TMD JFs encoded in azimuthal asymmetries:

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \psi d \phi_{J} d P_{J}^{2}}=\frac{\alpha^{2}}{x y Q^{2}}\left\{\left(1-y+\frac{y^{2}}{2}\right) F_{U U, T}+(1-y) \cos \left(2 \phi_{J}\right) F_{U U}^{\cos \left(2 \phi_{J}\right)}\right. \\
& +S_{\|}(1-y) \sin \left(2 \phi_{J}\right) F_{U L}^{\sin \left(2 \phi_{J}\right)}+S_{\|} \lambda_{e} y\left(1-\frac{y}{2}\right) F_{L L} \\
& +\left|S_{\perp}\right|\left[\left(1-y+\frac{y^{2}}{2}\right) \sin \left(\phi_{J}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{J}-\phi_{S}\right)}+(1-y) \sin \left(\phi_{J}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{J}+\phi_{S}\right)}\right. \\
& \left.\left.+(1-y) \sin \left(3 \phi_{J}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{J}-\phi_{S}\right)}\right]+\left|S_{\perp}\right| \lambda_{e} y\left(1-\frac{y}{2}\right) \cos \left(\phi_{J}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{J}-\phi_{S}\right)}\right\}
\end{aligned}
$$

F's contain convolutions of TMD PDFs and TMD JFs.

F 's: accessible by traditional jet function
F 's: inaccessible by traditional jet function

TMD PDFs AT LEADING TWIST

$$
\begin{aligned}
\Phi= & \frac{1}{2}\left\{f_{1} \not 九-f_{1 T}^{\perp} \frac{\epsilon_{\alpha \beta} p_{T}^{\alpha} S_{T}^{\beta} \npreceq n}{M}+\left(S_{L} g_{1 L}-\frac{p_{T} \cdot S_{T}}{M} g_{1 T}\right) \gamma_{5} \not h\right. \\
& \left.+h_{1 T} \frac{[S / T, \not h] \gamma_{5}}{2}+\left(S_{L} h_{1 L}^{\perp}-\frac{p_{T} \cdot S_{T}}{M} h_{1 T}^{\perp}\right) \frac{[p / T, \not 2] \gamma_{5}}{2 M}+i h_{1}^{\perp} \frac{[p / \Gamma, \not x]}{2 M}\right\}
\end{aligned}
$$

hadron quark	unpolarized	chiral	transverse
U	f_{1}		h_{1}^{\perp} (Boer-Mulders)
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$ (Sivers)	$g_{1 T}$	$h_{1 T}, h_{1 T}^{\perp}$ (transversity)

[Angeles-Martinez, Bacchetta, Balitsky, Boer, Boglione, Boussarie, Ceccopieri, Cherednikov, Connor et al.(2015)]

- 8 TMD PDFs at leading twist, functions of x and p_{T}^{2}
- T-even: $f_{1}, g_{1 L}, g_{1 T}, h_{1 T}, h_{1 L}^{\perp}, h_{1 T}^{\perp}$ T-odd: $f_{1 T}^{\perp}, h_{1}^{\perp}$
- 3 functions $f_{1}, g_{1 L}, h_{1 T}$ survive after p_{T} integration giving collinear PDF
- Accessible by traditional jet function: $f_{1}, g_{1 L}, g_{1 T}, f_{1 T}^{\perp}$

T-ODD JET FUNCTION

- Traditionally, only jets with high $p_{T}\left(\gg \Lambda_{\mathrm{QCD}}\right)$ were of interest. Production of high- p_{T} jets is perturbative. Since massless perturbative QCD is chiral-symmetric, only T-even jet functions appear.
- At low $p_{T}\left(\sim \Lambda_{Q C D}\right)$, the jet is sensitive to nonperturbative physics. In particular, spontaneous chiral symmetry breaking leads to a nonzero T-odd jet function when the jet axis is different from the direction of the fragmenting parton. (This is similar to Collins effect in fragmentation functions of hadrons [Collins (2002)].)

$$
\mathcal{J}\left(z, k_{T}\right)=\mathcal{J}_{1}\left(z, k_{T}\right) \frac{\hbar}{2}+i \mathcal{J}_{T}\left(z, k_{T}\right) \frac{\not k_{T} \not{ }^{\hbar}}{2}
$$

- \mathcal{J}_{1} : T-even, traditional jet function
- \mathcal{J}_{T} : T-odd, encodes correlations of quark transverse spin with quark transverse momentum (analogue of Collins function)

Advantages of T-odd Jet function

- Universality

Like the T-even \mathcal{J}_{1}, T-odd \mathcal{J}_{T} is process independent.

- Flexibility

Flexibility of choosing jet recombination scheme and hence the jet axis
\Rightarrow Adjust sensitivity to different nonperturbative contributions
\Rightarrow Provide opportunity to "film" the QCD nonperturbative dynamics, if one continuously change the axis from one to another.

- High predictive power
- Perturbative predictability. Since a jet contains many hadrons, the jet function has more perturbatively calculable degrees of freedom than the fragmentation function. For instance, in the WTA scheme, the z-dependence in the jet function is completely determined:

$$
\mathcal{J}\left(z, k_{T}, R\right)=\delta(1-z) \tilde{J}\left(k_{T}\right)+\mathcal{O}\left(\frac{k_{T}^{2}}{P_{J}^{2} R^{2}}\right)
$$

[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

- Nonperturbative predictability. Similar to the study in [Becher, Bell (2014)], \mathcal{J}_{T} can be factorized into a product of a perturbative coefficient and a nonperturbative factor. The nonperturbative factor has an operator definition [Vladimirov (2020)], and as a vacuum matrix element can be calculated on the lattice. This is unlike the TMD fragmentation function, which is an operator element of $|h+X\rangle$.

Azimuthal asymmetry

$\sin \left(\phi_{J}+\phi_{S}\right)$ azimuthal asymmetry:

$$
A\left(\zeta, y, \phi_{s}, \phi_{J}, P_{J \perp}\right)=1+\epsilon\left|S_{\perp}\right| \sin \left(\phi_{J}+\phi_{s}\right) \frac{F_{U T}}{F_{U U}}
$$

- $F_{U T} \sim h_{1} \otimes J_{T}$, probes transversity
- We simulate using Pythia $8.2+$ StringSpinner [Kerbizi, Loennblad (2021], with jet charge [Kang, Liu, Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
- Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]

$$
d_{i j}=\min \left(E_{i}^{-2}, E_{j}^{-2}\right) \frac{1-\cos \theta_{i j}}{1-\cos R}, \quad d_{i B}=E_{i}^{-2}
$$

(Conventional anti- k_{T} algorithms using k_{T} instead of E not good for low p_{T} jets)

- Change the jet axis from one to another (WTA \rightarrow E-scheme), "film" nonperturbative physics.

WTA scheme:

Azimuthal asymmetry

$\sin \left(\phi_{J}+\phi_{s}\right)$ azimuthal asymmetry:

$$
A\left(\zeta, y, \phi_{s}, \phi_{J}, P_{J \perp}\right)=1+\epsilon\left|S_{\perp}\right| \sin \left(\phi_{J}+\phi_{s}\right) \frac{F_{U T}}{F_{U U}}
$$

- $F_{U T} \sim h_{1} \otimes J_{T}$, probes transversity
- We simulate using Pythia $8.2+$ StringSpinner [Kerbizi, Loennblad (2021], with jet charge [Kang, Liu, Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
- Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]

$$
d_{i j}=\min \left(E_{i}^{-2}, E_{j}^{-2}\right) \frac{1-\cos \theta_{i j}}{1-\cos R}, \quad d_{i B}=E_{i}^{-2}
$$

(Conventional anti- k_{T} algorithms using k_{T} instead of E not good for low p_{T} jets)

- Change the jet axis from one to another (WTA \rightarrow E-scheme), "film" nonperturbative physics.

E-scheme:

$$
e+p^{\uparrow} \rightarrow J_{\text {anti } i-k_{T}, R=1}^{\mathrm{E} \text { sheme }} \text {, }
$$

$e^{+} e^{-}$ANNIHILATION

We demonstrate prediction on azimuthal asymmetry in $e^{+} e^{-}$annihilation at $\sqrt{s}=\sqrt{110} \mathrm{GeV}$, with WTA scheme and parametrized nonperturbative Sudakov for J_{T} :

$$
\begin{aligned}
R^{J_{1} J_{2}} & =1+\cos \left(2 \phi_{1}\right) \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \frac{F_{T}\left(q_{T}\right)}{F_{U}\left(q_{T}\right)} \\
R & =2 \int d \cos \theta \frac{d \phi_{1}}{\pi} \cos \left(2 \phi_{1}\right) R^{J_{1} J_{2}}
\end{aligned}
$$

SUMARY AND OUTLOOK

- We introduce the T-odd jet function, which is relevant for low p_{T} jets, i.e. jets at EIC.
- Using T-odd jet function, together with the traditional T-even one, we can probe all 8 TMD PDFs at leading twist using jets.
- T-odd jet function has the advantages of universality, flexibility, and high predictive power.
- T-odd jet functions provide new input to the global analysis of nonperturbative proton structure.

Thank you.

Backup slides

Azimuthal asymmetry at Leading Twist

Couplings of Φ and \mathcal{J} encoded in angular distribution:

$$
\begin{gathered}
\frac{d \sigma}{d x d y d z d \psi d \phi_{J} d P_{J}^{2}}=\frac{\alpha^{2}}{x y Q^{2}}\left\{\left(1-y+\frac{y^{2}}{2}\right) F_{U U, T}+(1-y) \cos \left(2 \phi_{J}\right) F_{U U}^{\cos \left(2 \phi_{J}\right)}\right. \\
+S_{\|}(1-y) \sin \left(2 \phi_{J}\right) F_{U L}^{\sin \left(2 \phi_{J}\right)}+S_{\|} \lambda_{e} y\left(1-\frac{y}{2}\right) F_{L L} \\
+\left|\boldsymbol{S}_{\perp}\right|\left[\left(1-y+\frac{y^{2}}{2}\right) \sin \left(\phi_{J}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{J}-\phi_{S}\right)}+(1-y) \sin \left(\phi_{J}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{J}+\phi_{S}\right)}\right. \\
\left.+(1-y) \sin \left(3 \phi_{J}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{J}-\phi_{S}\right)}\right]+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e} y\left(1-\frac{y}{2}\right) \cos \left(\phi_{J}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{J}-\phi_{S}\right)}
\end{gathered}
$$

- $F_{U U, T}, F_{L L}, F_{U T, T}^{\sin \left(\phi_{J}-\phi_{S}\right)}, F_{L T}^{\cos \left(\phi_{J}-\phi_{S}\right)}:$ contain T-even parts of Φ and \mathcal{J}
- $F_{U U}^{\cos \left(2 \phi_{J}\right)}, F_{U L}^{\sin \left(2 \phi_{J}\right)}, F_{U T}^{\sin \left(\phi_{J}+\phi_{S}\right)}, F_{U T}^{\sin \left(3 \phi_{J}-\phi_{S}\right)}$: contain T-odd parts of Φ and \mathcal{J}

The F 's are convolutions of TMD PDFs and jet functions:

$$
\begin{aligned}
& \mathcal{C}[w f J] \equiv x \sum_{a} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}+\boldsymbol{q}_{T}-\boldsymbol{k}_{T}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f\left(x, p_{T}^{2}\right) J\left(z, k_{T}^{2}\right) \\
& F_{U U, T}=\mathcal{C}\left[f_{1} \mathcal{J}_{1}\right], \quad F_{L L}=\mathcal{C}\left[g_{1 L} \mathcal{J}_{1}\right] \\
& F_{U T, T}^{\sin \left(\phi_{J}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1 \perp}^{\perp} \mathcal{J}_{1}\right], \quad F_{U T, T}^{\cos \left(\phi_{J}-\phi_{S}\right)}=\mathcal{C}\left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} g_{1 T} \mathcal{J}_{1}\right], \\
& F_{U U}^{\cos \left(2 \phi_{J}\right)}=\mathcal{C}\left[-\frac{\left(2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}\right)}{M} h_{1}^{\perp} \mathcal{J}_{T}\right] \\
& F_{U L}^{\sin \left(2 \phi_{J}\right)}=\mathcal{C}\left[-\frac{\left(2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}\right)}{M} h_{1 L}^{\perp} \mathcal{J}_{T}\right] \\
& F_{U T}^{\sin \left(\phi_{J}+\phi_{S}\right)}=\mathcal{C}\left[-\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} h_{1} \mathcal{J}_{T}\right] \\
& F_{U T}^{\sin \left(3 \phi_{J}-\phi_{S}\right)}=\mathcal{C}\left[\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)+\boldsymbol{p}_{T}^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)-4\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)}{2 M^{2}} h_{1 T}^{\perp} \mathcal{J}_{T}\right]
\end{aligned}
$$

where $\hat{\boldsymbol{h}} \equiv \boldsymbol{P}_{J \perp} /\left|\boldsymbol{P}_{J \perp}\right|$ and $h_{1} \equiv h_{1 T}+\frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp}$

